1
|
Song W, Cai H, Guo Y, Chen S, Yao Y, Wang J, Guo T, Zhang J, Chen C. OsSDG715, a Histone H3K9 Methyltransferase, Integrates Auxin and Cytokinin Signaling to Regulate Callus Formation in Rice. RICE (NEW YORK, N.Y.) 2025; 18:42. [PMID: 40419845 DOI: 10.1186/s12284-025-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025]
Abstract
Efficient callus induction is essential for the genetic transformation of rice (Oryza sativa), yet its regulatory mechanisms remain elusive. Previously, through a genome-wide association study (GWAS), we identified a significant associated locus on chromosome 8. In this study, we characterized this locus and demonstrated that OsSDG715, encoding a histone H3K9 methyltransferase, is the causal gene that positively regulates callus formation in rice. Results revealed that OsSDG715 is highly expressed during callus induction and exhibits natural variations associated with callus induction rate (CIR). Knockout of OsSDG715 via CRISPR/Cas9 led to a significant decrease in CIR and impaired callus morphology, indicating its positive regulation of callus formation. RNA-seq analyses revealed that 326 and 705 differentially expressed genes (DEGs) were upregulated and downregulated in sdg715 mutants, including auxin-responsive genes (OsIAA14, OsYUCCA6), cytokinin-related genes (OsCKX4, ARR10), and stress-responsive factors. Further analysis showed reduced endogenous indole-3-acetic acid (IAA) levels and increased zeatin levels in sdg715 mutants. These findings advance our understanding of the molecular mechanisms underlying rice callus formation, and offering valuable insights for optimizing tissue culture in molecular breeding.
Collapse
Affiliation(s)
- Wenjing Song
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hairong Cai
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuanyuan Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shiyi Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yingyun Yao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
| | - Chun Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Pan Q, Huang R, Xiao Q, Wu X, Jian B, Xiang Y, Gan L, Liu Z, Li Y, Gu T, Liu H. Inhibition of histone deacetylase in Arabidopsis root calli promotes de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2025; 15:1500573. [PMID: 39931333 PMCID: PMC11807735 DOI: 10.3389/fpls.2024.1500573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 02/13/2025]
Abstract
De novo organogenesis from somatic cells to the entire plant represents a remarkable biological phenomenon, but the underlying regulatory mechanism, particularly at the epigenetic level, remains obscure. In this work, we demonstrate the important role of histone deacetylases (HDACs) in shoot organogenesis. HDAC inhibition by trichostatin A (an HDAC inhibitor) at the callus induction stage promotes shoot formation in wounded roots and circumvents tissue wounding to initiate shoot regeneration in unwounded roots. This HDAC inhibition-mediated promotion of shoot organogenesis in wounded roots is associated with the concomitant upregulation of the wound signaling pathway (WOUND INDUCED DEDIFFERENTIATION 4, ENHANCER OF SHOOT REGENERATION1, ISOPENTENYLTRANSFERASE 5, CUP-SHAPED COTYLEDON 2 etc.) and the ARF-LBD pathway (AUXIN RESPONSE FACTOR 19, LATERAL ORGAN BOUNDARIES-DOMAIN 29, etc.) and the downregulation of auxin biosynthesis and reduced auxin content. Furthermore, inhibiting HDACs enhances the local enrichment of histone 3 lysine 9/lysine 14 acetylation at ISOPENTENYLTRANSFERASE 5, supporting the role of histone acetylation in its transcriptional regulation. On the other hand, the HDAC inhibition-associated activation of shoot organogenesis from unwounded roots is coupled with increased expression of the ARF-LBD pathway gene LATERAL ORGAN BOUNDARIES-DOMAIN 29 while bypassing the wound signaling or auxin biosynthetic genes. These findings provide novel insights into the regulatory mechanisms underlying de novo shoot organogenesis and lay a foundation for the improvement of plant transformation technologies.
Collapse
Affiliation(s)
- Qinwei Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruirui Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qiong Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Baoxia Jian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yanan Xiang
- Laboratory of Plant Hormone, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lijun Gan
- Laboratory of Plant Hormone, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zongrang Liu
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Huawei Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
3
|
Sena S, Prakash A, Van Staden J, Kumar V. Epigenetic control of plant regeneration: Unraveling the role of histone methylation. CURRENT PLANT BIOLOGY 2024; 40:100408. [DOI: 10.1016/j.cpb.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Yin F, Hu Y, Cao X, Xiao X, Zhang M, Xiang Y, Wang L, Yao Y, Sui M, Shi W. JmjC domain-containing histone demethylase gene family in Chinese cabbage: Genome-wide identification and expressional profiling. PLoS One 2024; 19:e0312798. [PMID: 39546552 PMCID: PMC11567544 DOI: 10.1371/journal.pone.0312798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The Jumonji C (JmjC) structural domain-containing gene family plays essential roles in stress responses. However, descriptions of this family in Brassica rapa ssp. pekinensis (Chinese cabbage) are still scarce. In this study, we identified 29 members of the BrJMJ gene family, with cis-acting elements related to light, low temperature, anaerobic conditions, and phytohormone responses. Most BrJMJs were highly expressed in the siliques and flowers, suggesting that histone demethylation may play a crucial role in reproductive organ development. The expression of BrJMJ1, BrJMJ2, BrJMJ5, BrJMJ13, BrJMJ21 and BrJMJ24 gradually increased with higher Cd concentration under Cd stress, while BrJMJ4 and BrJMJ29 could be induced by osmotic, salt, cold, and heat stress. These results demonstrate that BrJMJs are responsive to abiotic stress and support future analysis of their biological functions.
Collapse
Affiliation(s)
- Fengrui Yin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Yuanfeng Hu
- Agricultural Sciences Research Center, Pingxiang, Jiangxi Province, P. R. China
| | - Xiaoqun Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Xufeng Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Ming Zhang
- Department of Biotechnology, Jiangxi Biotech Vocational College, Nanchang, Jiangxi Province, P. R. China
| | - Yan Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Liangdeng Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Yuekeng Yao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Meilan Sui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Wenling Shi
- Department of Biotechnology, Jiangxi Biotech Vocational College, Nanchang, Jiangxi Province, P. R. China
| |
Collapse
|
5
|
Laosuntisuk K, Desai J, Doherty C. An Arabidopsis Cell Culture With Weak Circadian Rhythms Under Constant Light Compared With Constant Dark Can Be Rescued by ELF3. PLANT DIRECT 2024; 8:1-16. [PMID: 39610858 PMCID: PMC11603095 DOI: 10.1002/pld3.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
Callus and cell suspension culture techniques are valuable tools in plant biotechnology and are widely used in fundamental and applied research. For studies in callus and cell suspension cultures to be relevant, it is essential to know if the underlying biochemistry is similar to intact plants. This study examined the expression of core circadian genes in Arabidopsis callus from the cell suspension named AT2 and found that the circadian rhythms were impaired. The circadian waveforms were like intact plants in the light/dark cycles, but the circadian expression in the AT2 callus became weaker in the free-running, constant light conditions. Temperature cycles could drive the rhythmic expression in constant conditions, but there were novel peaks at the point of temperature transitions unique to each clock gene. We found that callus freshly induced from seedlings had normal oscillations, like intact plants, suggesting that the loss of the circadian oscillation in the AT2 callus was specific to this callus. We determined that neither the media composition nor the source of the AT2 callus caused this disruption. We observed that ELF3 expression was not differentially expressed between dawn and dusk in both entrained, light-dark cycles and constant light conditions. Overexpression of AtELF3 in the AT2 callus partially recovers the circadian oscillation in the AT2 callus. This work shows that while callus and cell suspension cultures can be valuable tools for investigating plant responses, careful evaluation of their phenotype is important. Moreover, the altered circadian rhythms under constant light and temperature cycles in the AT2 callus could be useful backgrounds to understand the connections driving circadian oscillators and light and temperature sensing at the cellular level.
Collapse
Affiliation(s)
- Kanjana Laosuntisuk
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Jigar S. Desai
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Colleen J. Doherty
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
6
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
7
|
Baile F, Calonje M. Dynamics of polycomb group marks in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102553. [PMID: 38776572 DOI: 10.1016/j.pbi.2024.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Polycomb Group (PcG) histone-modifying system is key in maintaining gene repression, providing a mitotically heritable cellular memory. Nevertheless, to allow plants to transition through distinct transcriptional programs during development or to respond to external cues, PcG-mediated repression requires reversibility. Several data suggest that the dynamics of PcG marks may vary considerably in different cell contexts; however, how PcG marks are established, maintained, or removed in each case is far from clear. In this review, we survey the knowns and unknowns of the molecular mechanisms underlying the maintenance or turnover of PcG marks in different cell stages.
Collapse
Affiliation(s)
- Fernando Baile
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain.
| |
Collapse
|
8
|
Wang W, Sung S. Chromatin sensing: integration of environmental signals to reprogram plant development through chromatin regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4332-4345. [PMID: 38436409 PMCID: PMC11263488 DOI: 10.1093/jxb/erae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Chromatin regulation in eukaryotes plays pivotal roles in controlling the developmental regulatory gene network. This review explores the intricate interplay between chromatin regulators and environmental signals, elucidating their roles in shaping plant development. As sessile organisms, plants have evolved sophisticated mechanisms to perceive and respond to environmental cues, orchestrating developmental programs that ensure adaptability and survival. A central aspect of this dynamic response lies in the modulation of versatile gene regulatory networks, mediated in part by various chromatin regulators. Here, we summarized current understanding of the molecular mechanisms through which chromatin regulators integrate environmental signals, influencing key aspects of plant development.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| |
Collapse
|
9
|
Wittmer J, Heidstra R. Appreciating animal induced pluripotent stem cells to shape plant cell reprogramming strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4373-4393. [PMID: 38869461 PMCID: PMC11263491 DOI: 10.1093/jxb/erae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Animals and plants have developed resilience mechanisms to effectively endure and overcome physical damage and environmental challenges throughout their life span. To sustain their vitality, both animals and plants employ mechanisms to replenish damaged cells, either directly, involving the activity of adult stem cells, or indirectly, via dedifferentiation of somatic cells that are induced to revert to a stem cell state and subsequently redifferentiate. Stem cell research has been a rapidly advancing field in animal studies for many years, driven by its promising potential in human therapeutics, including tissue regeneration and drug development. A major breakthrough was the discovery of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells by expressing a limited set of transcription factors. This discovery enabled the generation of an unlimited supply of cells that can be differentiated into specific cell types and tissues. Equally, a keen interest in the connection between plant stem cells and regeneration has been developed in the last decade, driven by the demand to enhance plant traits such as yield, resistance to pathogens, and the opportunities provided by CRISPR/Cas-mediated gene editing. Here we discuss how knowledge of stem cell biology benefits regeneration technology, and we speculate on the creation of a universal genotype-independent iPSC system for plants to overcome regenerative recalcitrance.
Collapse
Affiliation(s)
- Jana Wittmer
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
10
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
11
|
Li J, Zhang Q, Wang Z, Liu Q. The roles of epigenetic regulators in plant regeneration: Exploring patterns amidst complex conditions. PLANT PHYSIOLOGY 2024; 194:2022-2038. [PMID: 38290051 PMCID: PMC10980418 DOI: 10.1093/plphys/kiae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Plants possess remarkable capability to regenerate upon tissue damage or optimal environmental stimuli. This ability not only serves as a crucial strategy for immobile plants to survive through harsh environments, but also made numerous modern plant improvements techniques possible. At the cellular level, this biological process involves dynamic changes in gene expression that redirect cell fate transitions. It is increasingly recognized that chromatin epigenetic modifications, both activating and repressive, intricately interact to regulate this process. Moreover, the outcomes of epigenetic regulation on regeneration are influenced by factors such as the differences in regenerative plant species and donor tissue types, as well as the concentration and timing of hormone treatments. In this review, we focus on several well-characterized epigenetic modifications and their regulatory roles in the expression of widely studied morphogenic regulators, aiming to enhance our understanding of the mechanisms by which epigenetic modifications govern plant regeneration.
Collapse
Affiliation(s)
- Jiawen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zejia Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Kevei Z, Larriba E, Romero-Bosquet MD, Nicolás-Albujer M, Kurowski TJ, Mohareb F, Rickett D, Pérez-Pérez JM, Thompson AJ. Genes involved in auxin biosynthesis, transport and signalling underlie the extreme adventitious root phenotype of the tomato aer mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:76. [PMID: 38459215 PMCID: PMC10923741 DOI: 10.1007/s00122-024-04570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
The use of tomato rootstocks has helped to alleviate the soaring abiotic stresses provoked by the adverse effects of climate change. Lateral and adventitious roots can improve topsoil exploration and nutrient uptake, shoot biomass and resulting overall yield. It is essential to understand the genetic basis of root structure development and how lateral and adventitious roots are produced. Existing mutant lines with specific root phenotypes are an excellent resource to analyse and comprehend the molecular basis of root developmental traits. The tomato aerial roots (aer) mutant exhibits an extreme adventitious rooting phenotype on the primary stem. It is known that this phenotype is associated with restricted polar auxin transport from the juvenile to the more mature stem, but prior to this study, the genetic loci responsible for the aer phenotype were unknown. We used genomic approaches to define the polygenic nature of the aer phenotype and provide evidence that increased expression of specific auxin biosynthesis, transport and signalling genes in different loci causes the initiation of adventitious root primordia in tomato stems. Our results allow the selection of different levels of adventitious rooting using molecular markers, potentially contributing to rootstock breeding strategies in grafted vegetable crops, especially in tomato. In crops vegetatively propagated as cuttings, such as fruit trees and cane fruits, orthologous genes may be useful for the selection of cultivars more amenable to propagation.
Collapse
Affiliation(s)
- Zoltan Kevei
- Centre for Soil, AgriFood and Biosciences, Cranfield University, College Road, Bedfordshire, MK43 0AL, UK.
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Spain
| | | | | | - Tomasz J Kurowski
- Centre for Soil, AgriFood and Biosciences, Cranfield University, College Road, Bedfordshire, MK43 0AL, UK
| | - Fady Mohareb
- Centre for Soil, AgriFood and Biosciences, Cranfield University, College Road, Bedfordshire, MK43 0AL, UK
| | - Daniel Rickett
- Syngenta Crop Protection, Jealott's Hill International Research Centre, Bracknell Berkshire, RG42 6EY, UK
| | | | - Andrew J Thompson
- Centre for Soil, AgriFood and Biosciences, Cranfield University, College Road, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
13
|
Castro-Camba R, Neves M, Correia S, Canhoto J, Vielba JM, Sánchez C. Ethylene Action Inhibition Improves Adventitious Root Induction in Adult Chestnut Tissues. PLANTS (BASEL, SWITZERLAND) 2024; 13:738. [PMID: 38475584 DOI: 10.3390/plants13050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Phase change refers to the process of maturation and transition from the juvenile to the adult stage. In response to this shift, certain species like chestnut lose the ability to form adventitious roots, thereby hindering the successful micropropagation of adult plants. While auxin is the main hormone involved in adventitious root formation, other hormones, such as ethylene, are also thought to play a role in its induction and development. In this study, experiments were carried out to determine the effects of ethylene on the induction and growth of adventitious roots. The analysis was performed in two types of chestnut microshoots derived from the same tree, a juvenile-like line with a high rooting ability derived from basal shoots (P2BS) and a line derived from crown branches (P2CR) with low rooting responses. By means of the application of compounds to modify ethylene content or inhibit its signalling, the potential involvement of this hormone in the induction of adventitious roots was analysed. Our results show that ethylene can modify the rooting competence of mature shoots, while the response in juvenile material was barely affected. To further characterise the molecular reasons underlying this maturation-derived shift in behaviour, specific gene expression analyses were developed. The findings suggest that several mechanisms, including ethylene signalling, auxin transport and epigenetic modifications, relate to the modulation of the rooting ability of mature chestnut microshoots and their recalcitrant behaviour.
Collapse
Affiliation(s)
- Ricardo Castro-Camba
- Department of Plant Production, Misión Biológica de Galicia, CSIC, Avda de Vigo s/n, 15705 Santiago de Compostela, Spain
| | - Mariana Neves
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7350-478 Elvas, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jesús M Vielba
- Department of Plant Production, Misión Biológica de Galicia, CSIC, Avda de Vigo s/n, 15705 Santiago de Compostela, Spain
| | - Conchi Sánchez
- Department of Plant Production, Misión Biológica de Galicia, CSIC, Avda de Vigo s/n, 15705 Santiago de Compostela, Spain
| |
Collapse
|
14
|
Cui X, Wang J, Li K, Lv B, Hou B, Ding Z. Protein post-translational modifications in auxin signaling. J Genet Genomics 2024; 51:279-291. [PMID: 37451336 DOI: 10.1016/j.jgg.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Protein post-translational modifications (PTMs), such as ubiquitination, phosphorylation, and small ubiquitin-like modifier (SUMO)ylation, are crucial for regulating protein stability, activity, subcellular localization, and binding with cofactors. Such modifications remarkably increase the variety and complexity of proteomes, which are essential for regulating numerous cellular and physiological processes. The regulation of auxin signaling is finely tuned in time and space to guide various plant growth and development. Accumulating evidence indicates that PTMs play critical roles in auxin signaling regulations. Thus, a thorough and systematic review of the functions of PTMs in auxin signal transduction will improve our profound comprehension of the regulation mechanism of auxin signaling and auxin-mediated various processes. This review discusses the progress of protein ubiquitination, phosphorylation, histone acetylation and methylation, SUMOylation, and S-nitrosylation in the regulation of auxin signaling.
Collapse
Affiliation(s)
- Xiankui Cui
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ke Li
- Shandong Academy of Grape, Jinan, Shandong 250100, China
| | - Bingsheng Lv
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
15
|
Jin W, Yan W, Ma M, Hasi A, Che G. Genome-wide identification and expression analysis of the JMJ-C gene family in melon (Cucumis melo L.) reveals their potential role in fruit development. BMC Genomics 2023; 24:771. [PMID: 38093236 PMCID: PMC10720240 DOI: 10.1186/s12864-023-09868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Proteins with the jumonji (JMJ)-C domain belong to the histone demethylase family and contribute to reverse histone methylation. Although JMJ-C family genes have an essential role in regulating plant growth and development, the characterization of the JMJ-C family genes in melon has not been uncovered. RESULTS In this study, a total of 17 JMJ-C proteins were identified in melon (Cucumis melo L.). CmJMJs were categorized into five subfamilies based on the specific conserved domain: KDM4/JHDM3, KDM5/JARID1, JMJD6, KDM3/JHDM2, and JMJ-C domain-only. The chromosome localization analyses showed that 17 CmJMJs were distributed on nine chromosomes. Cis-acting element analyses of the 17 CmJMJ genes showed numerous hormone, light, and stress response elements distributed in the promoter region. Covariance analysis revealed one pair of replicated fragments (CmJMJ3a and CmJMJ3b) in 17 CmJMJ genes. We investigated the expression profile of 17 CmJMJ genes in different lateral organs and four developmental stages of fruit by RNA-seq transcriptome analysis and RT-qPCR. The results revealed that most CmJMJ genes were prominently expressed in female flowers, ovaries, and developing fruits, suggesting their active role in melon fruit development. Subcellular localization showed that the fruit-related CmJMJ5a protein is specifically localized in the cell nucleus. CONCLUSIONS This study provides a comprehensive understanding of the gene structure, classification, and evolution of JMJ-C in melon and supports the clarification of the JMJ-C functions in further research.
Collapse
Affiliation(s)
- Wuyun Jin
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wei Yan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ming Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
16
|
Chen Y, Hung FY, Sugimoto K. Epigenomic reprogramming in plant regeneration: Locate before you modify. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102415. [PMID: 37437389 DOI: 10.1016/j.pbi.2023.102415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Plants possess remarkable abilities for regeneration, and this developmental capability is strongly influenced by environmental conditions. Previous research has highlighted the positive effects of wound signaling and warm temperature on plant regeneration, and recent studies suggest that light and nutrient signals also influence the regenerative efficiencies. Several epigenetic factors, such as histone acetyl-transferases (HATs), POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), and H2A variants, play crucial roles in regulating the expression of genes implicated in plant regeneration. However, how these epigenetic factors recognize specific genomic regions to regulate regeneration genes is still unclear. In this article, we describe the latest studies of epigenetic regulation and discuss the functional coordination between transcription factors and epigenetic modifiers in plant regeneration.
Collapse
Affiliation(s)
- Yu Chen
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Fu-Yu Hung
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan.
| |
Collapse
|
17
|
Hesami M, Pepe M, de Ronne M, Yoosefzadeh-Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Transcriptomic Profiling of Embryogenic and Non-Embryogenic Callus Provides New Insight into the Nature of Recalcitrance in Cannabis. Int J Mol Sci 2023; 24:14625. [PMID: 37834075 PMCID: PMC10572465 DOI: 10.3390/ijms241914625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop. A total of 6118 genes displayed significant differential expression, with 1850 genes downregulated and 1873 genes upregulated in embryogenic callus compared to non-embryogenic callus. Notably, 196 phytohormone-related genes exhibited distinctly different expression patterns in the calli types, highlighting the crucial role of plant growth regulator (PGRs) signaling in callus development. Furthermore, 42 classes of transcription factors demonstrated differential expressions among the callus types, suggesting their involvement in the regulation of callus development. The evaluation of epigenetic-related genes revealed the differential expression of 247 genes in all callus types. Notably, histone deacetylases, chromatin remodeling factors, and EMBRYONIC FLOWER 2 emerged as key epigenetic-related genes, displaying upregulation in embryogenic calli compared to non-embryogenic calli. Their upregulation correlated with the repression of embryogenesis-related genes, including LEC2, AGL15, and BBM, presumably inhibiting the transition from embryogenic callus to somatic embryogenesis. These findings underscore the significance of epigenetic regulation in determining the developmental fate of cannabis callus. Generally, our results provide comprehensive insights into gene expression dynamics and molecular mechanisms underlying the development of diverse cannabis calli. The observed repression of auxin-dependent pathway-related genes may contribute to the recalcitrant nature of cannabis, shedding light on the challenges associated with efficient cannabis tissue culture and regeneration protocols.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
| | | | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec, QC G1V 0A6, Canada
| | | |
Collapse
|
18
|
Yan T, Hou Q, Wei X, Qi Y, Pu A, Wu S, An X, Wan X. Promoting genotype-independent plant transformation by manipulating developmental regulatory genes and/or using nanoparticles. PLANT CELL REPORTS 2023; 42:1395-1417. [PMID: 37311877 PMCID: PMC10447291 DOI: 10.1007/s00299-023-03037-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.
Collapse
Affiliation(s)
- Tingwei Yan
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Quancan Hou
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Yuchen Qi
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Suowei Wu
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xueli An
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
19
|
Šmeringai J, Schrumpfová PP, Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1239133. [PMID: 37662179 PMCID: PMC10471832 DOI: 10.3389/fpls.2023.1239133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
Collapse
Affiliation(s)
- Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
20
|
Bravo-Vázquez LA, Angulo-Bejarano PI, Bandyopadhyay A, Sharma A, Paul S. Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. PLANT CELL REPORTS 2023; 42:689-705. [PMID: 36753041 DOI: 10.1007/s00299-023-02992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Plant regulatory noncoding RNAs (ncRNAs) have emerged as key modulators of gene expression during callus induction. Their further study may promote the design of innovative plant tissue culture protocols. The use of plants by humans has recently taken on a new and expanding insight due to the advent of genetic engineering technologies. In this context, callus cultures have shown remarkable potential for synthesizing valuable biomolecules, crop improvement, plant micropropagation, and biodiversity preservation. A crucial stage in callus production is the conversion of somatic cells into totipotent cells; compelling evidence indicates that stress factors, transcriptional regulators, and plant hormones can trigger this biological event. Besides, posttranscriptional regulators of gene expression might be essential participants in callus induction. However, research related to the analysis of noncoding RNAs (ncRNAs) that modulate callogenesis and plant cell dedifferentiation in vitro is still at an early stage. During the last decade, some relevant studies have enlightened the fact that different classes of ncRNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs) are implicated in plant cell dedifferentiation through regulating the expression levels of diverse gene targets. Hence, understanding the molecular relevance of these ncRNAs in the aforesaid biological processes might represent a promising source of new biotechnological approaches for callus culture and plant improvement. In this current work, we review the experimental evidence regarding the prospective roles of ncRNAs in callus induction and plant cell dedifferentiation to promote this field of study.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines
- Reliance Industries Ltd., Navi Mumbai, 400701, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| |
Collapse
|
21
|
Zhai N, Pan X, Zeng M, Xu L. Developmental trajectory of pluripotent stem cell establishment in Arabidopsis callus guided by a quiescent center-related gene network. Development 2023; 150:286991. [PMID: 36762604 DOI: 10.1242/dev.200879] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
In plant tissue culture, callus formation is induced by a high auxin concentration. Among the three cell layers (the outer, middle and inner cell layers) of the callus, pluripotency acquisition in the middle cell layer is required for the potential ability of the callus to regenerate organs. Here, we reveal the developmental trajectory of middle cell layer initiation and maintenance in callus tissue originating from Arabidopsis thaliana hypocotyls. The S phase of the cell cycle is essential for the expression of quiescent center-related SCARECROW (SCR), PLETHORA1 (PLT1) and WUSCHEL-RELATED HOMEOBOX5 (WOX5) genes during the division of callus founder cells to initiate the callus primordium. After callus initiation, SHOOT-ROOT (SHR) proteins move from the inner to the middle cell layer and act together with SCR to promote the expression of PLT1 and WOX5. WOX5 represses the expression of VASCULAR-RELATED NAC-DOMAIN (VND) genes, thereby preventing callus tissue from differentiating into xylem cells. PLT1 and PLT2 directly activate JACKDAW (JKD), which is necessary for pluripotency acquisition in the middle cell layer. We hypothesize that the middle cell layer could have pluripotent stem cell activity and its establishment requires the quiescent center-related SCR-SHR-WOX5-PLT1/2-JKD gene network.
Collapse
Affiliation(s)
- Ning Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xuan Pan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Minhuan Zeng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
22
|
Liu X, Zhu K, Xiao J. Recent advances in understanding of the epigenetic regulation of plant regeneration. ABIOTECH 2023; 4:31-46. [PMID: 37220541 PMCID: PMC10199984 DOI: 10.1007/s42994-022-00093-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/27/2022] [Indexed: 05/22/2023]
Abstract
Ever since the concept of "plant cell totipotency" was first proposed in the early twentieth century, plant regeneration has been a major focus of study. Regeneration-mediated organogenesis and genetic transformation are important topics in both basic research and modern agriculture. Recent studies in the model plant Arabidopsis thaliana and other species have expanded our understanding of the molecular regulation of plant regeneration. The hierarchy of transcriptional regulation driven by phytohormone signaling during regeneration is associated with changes in chromatin dynamics and DNA methylation. Here, we summarize how various aspects of epigenetic regulation, including histone modifications and variants, chromatin accessibility dynamics, DNA methylation, and microRNAs, modulate plant regeneration. As the mechanisms of epigenetic regulation are conserved in many plants, research in this field has potential applications in boosting crop breeding, especially if coupled with emerging single-cell omics technologies.
Collapse
Affiliation(s)
- Xuemei Liu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kehui Zhu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
23
|
Jiang K, Guo H, Zhai J. Interplay of phytohormones and epigenetic regulation: A recipe for plant development and plasticity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:381-398. [PMID: 36223083 DOI: 10.1111/jipb.13384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Both phytohormone signaling and epigenetic mechanisms have long been known to play crucial roles in plant development and plasticity in response to ambient stimuli. Indeed, diverse signaling pathways mediated by phytohormones and epigenetic processes integrate multiple upstream signals to regulate various plant traits. Emerging evidence indicates that phytohormones and epigenetic processes interact at multiple levels. In this review, we summarize the current knowledge of the interplay between phytohormones and epigenetic processes from the perspective of phytohormone biology. We also review chemical regulators used in epigenetic studies and propose strategies for developing novel regulators using multidisciplinary approaches.
Collapse
Affiliation(s)
- Kai Jiang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
24
|
Peng J, Zhang WJ, Zhang Q, Su YH, Tang LP. The dynamics of chromatin states mediated by epigenetic modifications during somatic cell reprogramming. Front Cell Dev Biol 2023; 11:1097780. [PMID: 36727112 PMCID: PMC9884706 DOI: 10.3389/fcell.2023.1097780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
Somatic cell reprogramming (SCR) is the conversion of differentiated somatic cells into totipotent or pluripotent cells through a variety of methods. Somatic cell reprogramming also provides a platform to investigate the role of chromatin-based factors in establishing and maintaining totipotency or pluripotency, since high expression of totipotency- or pluripotency-related genes usually require an active chromatin state. Several studies in plants or mammals have recently shed light on the molecular mechanisms by which epigenetic modifications regulate the expression of totipotency or pluripotency genes by altering their chromatin states. In this review, we present a comprehensive overview of the dynamic changes in epigenetic modifications and chromatin states during reprogramming from somatic cells to totipotent or pluripotent cells. In addition, we illustrate the potential role of DNA methylation, histone modifications, histone variants, and chromatin remodeling during somatic cell reprogramming, which will pave the way to developing reliable strategies for efficient cellular reprogramming.
Collapse
Affiliation(s)
| | | | | | - Ying Hua Su
- *Correspondence: Ying Hua Su, ; Li Ping Tang,
| | | |
Collapse
|
25
|
Wan Q, Zhai N, Xie D, Liu W, Xu L. WOX11: the founder of plant organ regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:1. [PMID: 36596978 PMCID: PMC9810776 DOI: 10.1186/s13619-022-00140-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023]
Abstract
De novo organ regeneration is the process in which adventitious roots or shoots regenerate from detached or wounded organs. De novo organ regeneration can occur either in natural conditions, e.g. adventitious root regeneration from the wounded sites of detached leaves or stems, or in in-vitro tissue culture, e.g. organ regeneration from callus. In this review, we summarize recent advances in research on the molecular mechanism of de novo organ regeneration, focusing on the role of the WUSCHEL-RELATED HOMEOBOX11 (WOX11) gene in the model plant Arabidopsis thaliana. WOX11 is a direct target of the auxin signaling pathway, and it is expressed in, and regulates the establishment of, the founder cell during de novo root regeneration and callus formation. WOX11 activates the expression of its target genes to initiate root and callus primordia. Therefore, WOX11 links upstream auxin signaling to downstream cell fate transition during regeneration. We also discuss the role of WOX11 in diverse species and its evolution in plants.
Collapse
Affiliation(s)
- Qihui Wan
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Ning Zhai
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Dixiang Xie
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Wu Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Lin Xu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
26
|
Shin SY, Choi Y, Kim SG, Park SJ, Park JS, Moon KB, Kim HS, Jeon JH, Cho HS, Lee HJ. Submergence promotes auxin-induced callus formation through ethylene-mediated post-transcriptional control of auxin receptors. MOLECULAR PLANT 2022; 15:1947-1961. [PMID: 36333910 DOI: 10.1016/j.molp.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Plant cells in damaged tissue can be reprogrammed to acquire pluripotency and induce callus formation. However, in the aboveground organs of many species, somatic cells that are distal to the wound site become less sensitive to auxin-induced callus formation, suggesting the existence of repressive regulatory mechanisms that are largely unknown. Here we reveal that submergence-induced ethylene signals promote callus formation by releasing post-transcriptional silencing of auxin receptor transcripts in non-wounded regions. We determined that short-term submergence of intact seedlings induces auxin-mediated cell dedifferentiation across the entirety of Arabidopsis thaliana explants. The constitutive triple response 1-1 (ctr1-1) mutation induced callus formation in explants without submergence, suggesting that ethylene facilitates cell dedifferentiation. We show that ETHYLENE-INSENSITIVE 2 (EIN2) post-transcriptionally regulates the abundance of transcripts for auxin receptor genes by facilitating microRNA393 degradation. Submergence-induced calli in non-wounded regions were suitable for shoot regeneration, similar to those near the wound site. We also observed submergence-promoted callus formation in Chinese cabbage (Brassica rapa), indicating that this may be a conserved mechanism in other species. Our study identifies previously unknown regulatory mechanisms by which ethylene promotes cell dedifferentiation and provides a new approach for boosting callus induction efficiency in shoot explants.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Yuri Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Su-Jin Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
27
|
Ma J, Li Q, Zhang L, Cai S, Liu Y, Lin J, Huang R, Yu Y, Wen M, Xu T. High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2425-2437. [PMID: 36250442 DOI: 10.1111/jipb.13387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Callus induction, which results in fate transition in plant cells, is considered as the first and key step for plant regeneration. This process can be stimulated in different tissues by a callus-inducing medium (CIM), which contains a high concentration of phytohormone auxin. Although a few key regulators for callus induction have been identified, the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation. Here, we find that high auxin induces callus through a H3K36 histone methylation-dependent mechanism, which requires the methyltransferase SET DOMAIN GROUP 8 (SDG8). During callus induction, the increased auxin accumulates SDG8 expression through a TIR1/AFBs-based transcriptional regulation. SDG8 then deposits H3K36me3 modifications on the loci of callus-related genes, including a master regulator WOX5 and the cell proliferation-related genes, such as CYCB1.1. This epigenetic regulation in turn is required for the transcriptional activation of these genes during callus formation. These findings suggest that the massive transcriptional reprogramming for cell fate transition by auxin during callus formation requires epigenetic modifications including SDG8-mediated histone H3K36 methylation. Our results provide insight into the coordination between auxin signaling and epigenetic regulation during fundamental processes in plant development.
Collapse
Affiliation(s)
- Jun Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Li
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Lei Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sen Cai
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Liu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juncheng Lin
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongfeng Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongqiang Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingzhang Wen
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tongda Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
28
|
Müller-Xing R, Xing Q. The plant stem-cell niche and pluripotency: 15 years of an epigenetic perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:1018559. [PMID: 36388540 PMCID: PMC9659954 DOI: 10.3389/fpls.2022.1018559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pluripotent stem-cells are slowly dividing cells giving rise to daughter cells that can either differentiate to new tissues and organs, or remain stem-cells. In plants, stem-cells are located in specific niches of the shoot and root apical meristems (SAMs and RAMs). After ablation of stem-cell niches, pluripotent meristematic cells can establish new stem-cells, whereas the removal of the whole meristem destructs the regeneration process. In tissue cultures, after detached plant organs are transferred to rooting or callus induction medium (G5 or CIM), vasculature-associated pluripotent cells (VPCs) immediately start proliferation to form adventitious roots or callus, respectively, while other cell types of the organ explants basically play no part in the process. Hence, in contrast to the widely-held assumption that all plant cells have the ability to reproduce a complete organism, only few cell types are pluripotent in practice, raising the question how pluripotent stem-cells differ from differentiated cells. It is now clear that, in addition to gene regulatory networks of pluripotency factors and phytohormone signaling, epigenetics play a crucial role in initiation, maintenance and determination of plant stem-cells. Although, more and more epigenetic regulators have been shown to control plant stem-cell fate, only a few studies demonstrate how they are recruited and how they change the chromatin structure and transcriptional regulation of pluripotency factors. Here, we highlight recent breakthroughs but also revisited classical studies of epigenetic regulation and chromatin dynamics of plant stem-cells and their pluripotent precursor-cells, and point out open questions and future directions.
Collapse
|
29
|
Cheng YZ, He GQ, Yang SD, Ma SH, Ma JP, Shang FHZ, Li XF, Jin HY, Guo DL. Genome-wide identification and expression analysis of JmjC domain-containing genes in grape under MTA treatment. Funct Integr Genomics 2022; 22:783-795. [PMID: 35854188 DOI: 10.1007/s10142-022-00885-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 12/31/2022]
Abstract
Histone demethylases containing the JmjC domain play an extremely important role in maintaining the homeostasis of histone methylation and are closely related to plant growth and development. Currently, the JmjC domain-containing proteins have been reported in many species; however, they have not been systematically studied in grapes. In this paper, 21 VviJMJ gene family members were identified from the whole grape genome, and the VviJMJ genes were classified into five subfamilies: KDM3, KDM4, KDM5, JMJD6, and JMJ-only based on the phylogenetic relationship and structural features of Arabidopsis and grape. After that, the conserved sites of VviJMJ genes were revealed by protein sequence analysis. In addition, chromosomal localization and gene structure analysis revealed the heterogeneous distribution of VviJMJ genes on grape chromosomes and the structural features of VviJMJ genes, respectively. Analysis of promoter cis-acting elements demonstrated numerous hormone, light, and stress response elements in the promoter region of the VviJMJ genes. Subsequently, the grape fruit was treated with MTA (an H3K4 methylation inhibitor), which significantly resulted in the early ripening of grape fruits. The qRT-PCR analysis showed that VviJMJ genes (except VviJMJ13c) had different expression patterns during grape fruit development. The expression of VviJMJ genes in the treatment group was significantly higher than that in the control group. The results indicate that VviJMJ genes are closely related to grape fruit ripening.
Collapse
Affiliation(s)
- Yi-Zhe Cheng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Sheng-Di Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Shuai-Hui Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Jin-Ping Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Fang-Hui-Zi Shang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Xu-Fei Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hui-Ying Jin
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China. .,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
30
|
Maruoka T, Gan ES, Otsuka N, Shirakawa M, Ito T. Histone Demethylases JMJ30 and JMJ32 Modulate the Speed of Vernalization Through the Activation of FLOWERING LOCUS C in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:837831. [PMID: 35845667 PMCID: PMC9284024 DOI: 10.3389/fpls.2022.837831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Vernalization is the promotion of flowering after prolonged exposure to cold. In Arabidopsis thaliana, vernalization induces epigenetic silencing of the floral repressor gene FLOWERING LOCUS C (FLC). Among the repressive epigenetic marks, the trimethylation of lysine 27 on histone H3 proteins (H3K27me3) is a critical contributor to the epigenetic silencing of FLC. The deposition of H3K27me3 is mediated by Polycomb Repressive Complex 2 (PRC2). Conversely, the elimination of H3K27me3 is mediated by histone demethylases, Jumonji-C domain-containing protein JMJ30 and its homolog JMJ32. However, the role of JMJ30 and JMJ32 in vernalization is largely unknown. In this study, we found that cold treatment dramatically reduced the expression levels of JMJ30 and did not reduce those of JMJ32. Next, by using the genetic approach, we found that the flowering of jmj30 jmj32 was accelerated under moderate vernalized conditions. Under moderate vernalized conditions, the silencing of FLC occurred more quickly in jmj30 jmj32 than in the wild type. These results suggested that the histone demethylases JMJ30 and JMJ32 brake vernalization through the activation of FLC. Our study suggested that PRC2 and Jumonji histone demethylases act in an opposing manner to regulate flowering time via epigenetic modifications.
Collapse
Affiliation(s)
- Takashi Maruoka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Eng-Seng Gan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Nana Otsuka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
31
|
Hu H, Du J. Structure and mechanism of histone methylation dynamics in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102211. [PMID: 35452951 DOI: 10.1016/j.pbi.2022.102211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Histone methylation plays a central role in regulating chromatin state and gene expression in Arabidopsis and is involved in a variety of physiological and developmental processes. Dynamic regulation of histone methylation relies on both histone methyltransferase "writer" and histone demethylases "eraser" proteins. In this review, we focus on the four major histone methylation modifications in Arabidopsis H3, H3K4, H3K9, H3K27, and H3K36, and summarize current knowledge of the dynamic regulation of these modifications, with an emphasis on the biochemical and structural perspectives of histone methyltransferases and demethylases.
Collapse
Affiliation(s)
- Hongmiao Hu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
32
|
Bull T, Michelmore R. Molecular Determinants of in vitro Plant Regeneration: Prospects for Enhanced Manipulation of Lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:888425. [PMID: 35615120 PMCID: PMC9125155 DOI: 10.3389/fpls.2022.888425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 05/12/2023]
Abstract
In vitro plant regeneration involves dedifferentiation and molecular reprogramming of cells in order to regenerate whole organs. Plant regeneration can occur via two pathways, de novo organogenesis and somatic embryogenesis. Both pathways involve intricate molecular mechanisms and crosstalk between auxin and cytokinin signaling. Molecular determinants of both pathways have been studied in detail in model species, but little is known about the molecular mechanisms controlling de novo shoot organogenesis in lettuce. This review provides a synopsis of our current knowledge on molecular determinants of de novo organogenesis and somatic embryogenesis with an emphasis on the former as well as provides insights into applying this information for enhanced in vitro regeneration in non-model species such as lettuce (Lactuca sativa L.).
Collapse
Affiliation(s)
- Tawni Bull
- The Genome Center, University of California, Davis, Davis, CA, United States
- Graduate Group in Horticulture and Agronomy, University of California, Davis, Davis, CA, United States
| | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
33
|
Li X, Zhang X, Shi T, Chen M, Jia C, Wang J, Hou Z, Han J, Bian S. Identification of ARF family in blueberry and its potential involvement of fruit development and pH stress response. BMC Genomics 2022; 23:329. [PMID: 35477362 PMCID: PMC9047364 DOI: 10.1186/s12864-022-08556-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry. Results In the present study, 60 ARF genes (VcARF) were identified in blueberry, and they showed diverse gene structures and motif compositions among the groups and similar within each group in the phylogenetic tree. Noticeably, 9 digenic, 5 trigenic and 6 tetragenic VcARF pairs exhibited more than 95% identity to each other. Computational analysis indicated that 23 VcARFs harbored the miRNA responsive element (MRE) of miR160 or miR167 like other plant ARF genes. Interestingly, the MRE of miR156d/h-3p was observed in the 5’UTR of 3 VcARFs, suggesting a potentially novel post-transcriptional control. Furthermore, the transcript accumulations of VcARFs were investigated during fruit development, and three categories of transcript profiles were observed, implying different functional roles. Meanwhile, the expressions of VcARFs to different pH conditions (pH4.5 and pH6.5) were surveyed in pH-sensitive and tolerant blueberry species, and a number of VcARFs showed different transcript accumulations. More importantly, distinct transcriptional response to pH stress (pH6.5) were observed for several VcARFs (such as VcARF6s and VcARF19-3/19–4) between pH-sensitive and tolerant species, suggesting their potential roles in adaption to pH stress. Conclusions Sixty VcARF genes were identified and characterized, and their transcript profiles were surveyed during fruit development and in response to pH stress. These findings will contribute to future research for eliciting the functional roles of VcARFs and regulatory mechanisms, especially fruit development and adaption to pH stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08556-y.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyi Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, China
| | - Min Chen
- College of Plant Science, Jilin University, Changchun, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Research & Development Center of Blueberry, Beijing, 100083, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, China.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
34
|
Maren NA, Duan H, Da K, Yencho GC, Ranney TG, Liu W. Genotype-independent plant transformation. HORTICULTURE RESEARCH 2022; 9:uhac047. [PMID: 35531314 PMCID: PMC9070643 DOI: 10.1093/hr/uhac047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 05/26/2023]
Abstract
Plant transformation and regeneration remain highly species- and genotype-dependent. Conventional hormone-based plant regeneration via somatic embryogenesis or organogenesis is tedious, time-consuming, and requires specialized skills and experience. Over the last 40 years, significant advances have been made to elucidate the molecular mechanisms underlying embryogenesis and organogenesis. These pioneering studies have led to a better understanding of the key steps and factors involved in plant regeneration, resulting in the identification of crucial growth and developmental regulatory genes that can dramatically improve regeneration efficiency, shorten transformation time, and make transformation of recalcitrant genotypes possible. Co-opting these regulatory genes offers great potential to develop innovative genotype-independent genetic transformation methods for various plant species, including specialty crops. Further developing these approaches has the potential to result in plant transformation without the use of hormones, antibiotics, selectable marker genes, or tissue culture. As an enabling technology, the use of these regulatory genes has great potential to enable the application of advanced breeding technologies such as genetic engineering and gene editing for crop improvement in transformation-recalcitrant crops and cultivars. This review will discuss the recent advances in the use of regulatory genes in plant transformation and regeneration, and their potential to facilitate genotype-independent plant transformation and regeneration.
Collapse
Affiliation(s)
- Nathan A Maren
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Hui Duan
- USDA-ARS, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center (BARC)-West, Beltsville, MD 20705, USA
| | - Kedong Da
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Thomas G Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
35
|
Zhang Y, Yang X, Nvsvrot T, Huang L, Cai G, Ding Y, Ren W, Wang N. The transcription factor WRKY75 regulates the development of adventitious roots, lateral buds and callus by modulating hydrogen peroxide content in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1483-1498. [PMID: 34791155 DOI: 10.1093/jxb/erab501] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) plays important roles in plant development. Adventitious roots (AR), lateral buds (LB) and callus formation are important traits for plants. Here, a gene encoding RESPIRATORY BURST OXIDASE HOMOLOG B (PdeRBOHB) from poplar line 'NL895' (Populus. deltoides × P. euramericana) was predicted to be involved in H2O2 accumulation, and lines with reduced expression were generated. H2O2 content was decreased, and the development of adventitious roots, lateral buds, and callus was inhibited in reduced expression PdeRBOHB lines. A gene encoding PdeWRKY75 was identified as the upstream transcription factor positively regulating PdeRBOHB. This regulation was confirmed by dual luciferase reporter assay, GUS transient expression analysis and electrophoretic mobility shift assay. In the reduced expression PdeWRKY75 lines, H2O2 content was decreased and the development of adventitious roots, lateral buds, and callus development was inhibited, while in the overexpression lines, H2O2 content was increased and the development of adventitious roots and lateral buds was inhibited, but callus formation was enhanced. Additionally, reduced expression PdeRBOHB lines showed lowered expression of PdeWRKY75, while exogenous application of H2O2 showed the opposite effect. Together, these results suggest that PdeWRKY75 and PdeRBOHB are part of a regulatory module in H2O2 accumulation, which is involved in the regulation of multiple biological processes.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqing Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tashbek Nvsvrot
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyu Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanghua Cai
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Ding
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyu Ren
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
36
|
Lopez L, Perrella G, Calderini O, Porceddu A, Panara F. Genome-Wide Identification of Histone Modification Gene Families in the Model Legume Medicago truncatula and Their Expression Analysis in Nodules. PLANTS 2022; 11:plants11030322. [PMID: 35161303 PMCID: PMC8838541 DOI: 10.3390/plants11030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023]
Abstract
Histone methylation and acetylation are key processes in the epigenetic regulation of plant growth, development, and responses to environmental stimuli. The genes encoding for the enzymes that are responsible for these chromatin post-translational modifications, referred to as histone modification genes (HMGs), have been poorly investigated in Leguminosae species, despite their importance for establishment and activity of nitrogen-fixing nodules. In silico analysis of Medicago truncatula HMGs identified 81 histone methyltransferases, 46 histone demethylases, 64 histone acetyltransferases, and 15 histone deacetylases. MtHMGs were analyzed for their structure and domain composition, and some combinations that were not yet reported in other plant species were identified. Genes have been retrieved from M. truncatula A17 and R108 genotypes as well as M. sativa CADL and Zhongmu No.1; the gene number and distribution were compared with Arabidopsis thaliana. Furthermore, by analyzing the expression data that were obtained at various developmental stages and in different zones of nitrogen-fixing nodules, we identified MtHMG loci that could be involved in nodule development and function. This work sets a reference for HMG genomic organization in legumes which will be useful for functional investigation that is aimed at elucidating HMGs involvement in nodule development and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Giorgio Perrella
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Ornella Calderini
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 06128 Perugia, Italy
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Francesco Panara
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| |
Collapse
|
37
|
Alejo-Vinogradova MT, Ornelas-Ayala D, Vega-León R, Garay-Arroyo A, García-Ponce B, R Álvarez-Buylla E, Sanchez MDLP. Unraveling the role of epigenetic regulation in asymmetric cell division during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:38-49. [PMID: 34518884 DOI: 10.1093/jxb/erab421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Asymmetric cell divisions are essential to generate different cellular lineages. In plants, asymmetric cell divisions regulate the correct formation of the embryo, stomatal cells, apical and root meristems, and lateral roots. Current knowledge of regulation of asymmetric cell divisions suggests that, in addition to the function of key transcription factor networks, epigenetic mechanisms play crucial roles. Therefore, we highlight the importance of epigenetic regulation and chromatin dynamics for integration of signals and specification of cells that undergo asymmetric cell divisions, as well as for cell maintenance and cell fate establishment of both progenitor and daughter cells. We also discuss the polarization and segregation of cell components to ensure correct epigenetic memory or resetting of epigenetic marks during asymmetric cell divisions.
Collapse
Affiliation(s)
- M Teresa Alejo-Vinogradova
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Rosario Vega-León
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - María de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| |
Collapse
|
38
|
Wu LY, Shang GD, Wang FX, Gao J, Wan MC, Xu ZG, Wang JW. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev Cell 2022; 57:526-542.e7. [DOI: 10.1016/j.devcel.2021.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
|
39
|
Fang H, Shao Y, Wu G. Reprogramming of Histone H3 Lysine Methylation During Plant Sexual Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:782450. [PMID: 34917115 PMCID: PMC8669150 DOI: 10.3389/fpls.2021.782450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Plants undergo extensive reprogramming of chromatin status during sexual reproduction, a process vital to cell specification and pluri- or totipotency establishment. As a crucial way to regulate chromatin organization and transcriptional activity, histone modification can be reprogrammed during sporogenesis, gametogenesis, and embryogenesis in flowering plants. In this review, we first introduce enzymes required for writing, recognizing, and removing methylation marks on lysine residues in histone H3 tails, and describe their differential expression patterns in reproductive tissues, then we summarize their functions in the reprogramming of H3 lysine methylation and the corresponding chromatin re-organization during sexual reproduction in Arabidopsis, and finally we discuss the molecular significance of histone reprogramming in maintaining the pluri- or totipotency of gametes and the zygote, and in establishing novel cell fates throughout the plant life cycle. Despite rapid achievements in understanding the molecular mechanism and function of the reprogramming of chromatin status in plant development, the research in this area still remains a challenge. Technological breakthroughs in cell-specific epigenomic profiling in the future will ultimately provide a solution for this challenge.
Collapse
|
40
|
Lee K, Park OS, Go JY, Yu J, Han JH, Kim J, Bae S, Jung YJ, Seo PJ. Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Rep 2021; 37:109980. [PMID: 34758306 DOI: 10.1016/j.celrep.2021.109980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Plants exhibit high regenerative capacity, which is controlled by various genetic factors. Here, we report that ARABIDOPSIS TRITHORAX-RELATED 2 (ATXR2) controls de novo shoot organogenesis by regulating auxin-cytokinin interaction. The auxin-inducible ATXR2 Trithorax Group (TrxG) protein temporally interacts with the cytokinin-responsive type-B ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) at early stages of shoot regeneration. The ATXR2-ARR1 complex binds to and deposits the H3K36me3 mark in the promoters of a subset of type-A ARR genes, ARR5 and ARR7, thus activating their expression. Consequently, the ATXR2/ARR1-type-A ARR module transiently represses cytokinin signaling and thereby de novo shoot regeneration. The atxr2-1 mutant calli exhibit enhanced shoot regeneration with low expression of ARR5 and ARR7, which ultimately upregulates WUSCHEL (WUS) expression. Thus, ATXR2 regulates cytokinin signaling and prevents premature WUS activation to ensure proper cell fate transition, and the auxin-cytokinin interaction underlies the initial specification of shoot meristem in callus.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Ok-Sun Park
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Ji Yun Go
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Jihyeon Yu
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Jun Hee Han
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
41
|
Yamaguchi N. Removal of H3K27me3 by JMJ Proteins Controls Plant Development and Environmental Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:687416. [PMID: 34220908 PMCID: PMC8248668 DOI: 10.3389/fpls.2021.687416] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 05/26/2023]
Abstract
Trimethylation of histone H3 lysine 27 (H3K27me3) is a highly conserved repressive histone modification that signifies transcriptional repression in plants and animals. In Arabidopsis thaliana, the demethylation of H3K27 is regulated by a group of JUMONJI DOMAIN-CONTANING PROTEIN (JMJ) genes. Transcription of JMJ genes is spatiotemporally regulated during plant development and in response to the environment. Once JMJ genes are transcribed, recruitment of JMJs to target genes, followed by demethylation of H3K27, is critically important for the precise control of gene expression. JMJs function synergistically and antagonistically with transcription factors and/or other epigenetic regulators on chromatin. This review summarizes the latest advances in our understanding of Arabidopsis H3K27me3 demethylases that provide robust and flexible epigenetic regulation of gene expression to direct appropriate development and environmental responses in plants.
Collapse
|
42
|
Lee HJ, Park JS, Shin SY, Kim SG, Lee G, Kim HS, Jeon JH, Cho HS. Submergence deactivates wound-induced plant defence against herbivores. Commun Biol 2020; 3:651. [PMID: 33159149 PMCID: PMC7648080 DOI: 10.1038/s42003-020-01376-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Flooding is a common and critical disaster in agriculture, because it causes defects in plant growth and even crop loss. An increase in herbivore populations is often observed after floods, which leads to additional damage to the plants. Although molecular mechanisms underlying the plant responses to flooding have been identified, how plant defence systems are affected by flooding remains poorly understood. Herein, we show that submergence deactivates wound-induced defence against herbivore attack in Arabidopsis thaliana. Submergence rapidly suppressed the wound-induced expression of jasmonic acid (JA) biosynthesis genes, resulting in reduced JA accumulation. While plants exposed to hypoxia in argon gas exhibited similar reduced wound responses, the inhibitory effects were initiated after short-term submergence without signs for lack of oxygen. Instead, expression of ethylene-responsive genes was increased after short-term submergence. Blocking ethylene signalling by ein2-1 mutation partially restored suppressed expression of several wound-responsive genes by submergence. In addition, submergence rapidly removed active markers of histone modifications at a gene locus involved in JA biosynthesis. Our findings suggest that submergence inactivates defence systems of plants, which would explain the proliferation of herbivores after flooding. Hyo-Jun Lee et al. show that submergence in Arabidopsis deactivates wound-induced defence against herbivore attack by suppressing the expression of jasmonic acid biosynthesis genes and increasing expression of ethylene-responsive genes. These results shed light on how flooding may impact plant defence systems.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea.
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| |
Collapse
|
43
|
Abstract
The universal importance of epigenetic regulation has become explicit over the last decade. There is now a detailed understanding of the molecular signatures and chromatin-modifying enzymes determining epigenetic regulation. For example, the trimethylation of lysine 27 at histone H3 by Polycomb complexes is a hallmark of silenced gene expression conserved across animal and plant kingdoms. The repressive activity of Polycomb complexes is balanced by the histone demethylase activity of Jumonji C-domain proteins. There has been a lot of research on Polycomb functions and H3K27 methylation; however, until recently, little was known about the role of histone H3K27 demethylases. Here, we review the role of Jumonji C-domain proteins from the plant development perspective. We will recall the history of histone lysine demethylation and explore the recent advances on the H3K27 demethylases in plant biology. Conserved and novel genomic functions of these epigenetic regulators will be discussed.
Collapse
Affiliation(s)
- Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
44
|
Natural Variation in Plant Pluripotency and Regeneration. PLANTS 2020; 9:plants9101261. [PMID: 32987766 PMCID: PMC7598583 DOI: 10.3390/plants9101261] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Plant regeneration is essential for survival upon wounding and is, hence, considered to be a strong natural selective trait. The capacity of plant tissues to regenerate in vitro, however, varies substantially between and within species and depends on the applied incubation conditions. Insight into the genetic factors underlying this variation may help to improve numerous biotechnological applications that exploit in vitro regeneration. Here, we review the state of the art on the molecular framework of de novo shoot organogenesis from root explants in Arabidopsis, which is a complex process controlled by multiple quantitative trait loci of various effect sizes. Two types of factors are distinguished that contribute to natural regenerative variation: master regulators that are conserved in all experimental systems (e.g., WUSCHEL and related homeobox genes) and conditional regulators whose relative role depends on the explant and the incubation settings. We further elaborate on epigenetic variation and protocol variables that likely contribute to differential explant responsivity within species and conclude that in vitro shoot organogenesis occurs at the intersection between (epi) genetics, endogenous hormone levels, and environmental influences.
Collapse
|
45
|
Zhang H, Guo F, Qi P, Huang Y, Xie Y, Xu L, Han N, Xu L, Bian H. OsHDA710-Mediated Histone Deacetylation Regulates Callus Formation of Rice Mature Embryo. PLANT & CELL PHYSIOLOGY 2020; 61:1646-1660. [PMID: 32592489 DOI: 10.1093/pcp/pcaa086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/17/2020] [Indexed: 05/18/2023]
Abstract
Histone deacetylases (HDACs) play important roles in the regulation of eukaryotic gene expression. The role of HDACs in specialized transcriptional regulation and biological processes is poorly understood. In this study, we evaluated the global expression patterns of genes related to epigenetic modifications during callus initiation in rice. We found that the repression of HDAC activity by trichostatin A (TSA) or by OsHDA710 mutation (hda710) results in impaired callus formation of rice mature embryo and increased global histone H3 acetylation levels. The HDAC inhibition decreased auxin response and cell proliferation in callus formation. Meanwhile, the transcriptional repressors OsARF18 and OsARF22 were upregulated in the callus of hda710. The chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) analysis demonstrated that the callus of hda710 exhibited enhanced histone H3 acetylation levels at the chromatin regions of OsARF18 and OsARF22. Furthermore, we found that OsARF18 and OsARF22 were regulated through OsHDA710 recruitment to their target loci. In addition, overexpression of OsARF18 decreased the transcription of downstream genes PLT1 and PLT2 and inhibited callus formation of the mature embryo. These results demonstrate that OsHDA710 regulates callus formation by suppressing repressive OsARFs via histone deacetylation during callus formation of rice mature embryo. This indicates that OsHDA710-mediated histone deacetylation is an epigenetic regulation pathway for maintaining auxin response during cell dedifferentiation.
Collapse
Affiliation(s)
- Haidao Zhang
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu Guo
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peipei Qi
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizi Huang
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Lei Xu
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Han
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
Ibáñez S, Carneros E, Testillano PS, Pérez-Pérez JM. Advances in Plant Regeneration: Shake, Rattle and Roll. PLANTS (BASEL, SWITZERLAND) 2020; 9:E897. [PMID: 32708602 PMCID: PMC7412315 DOI: 10.3390/plants9070897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/23/2023]
Abstract
Some plant cells are able to rebuild new organs after tissue damage or in response to definite stress treatments and/or exogenous hormone applications. Whole plants can develop through de novo organogenesis or somatic embryogenesis. Recent findings have enlarged our understanding of the molecular and cellular mechanisms required for tissue reprogramming during plant regeneration. Genetic analyses also suggest the key role of epigenetic regulation during de novo plant organogenesis. A deeper understanding of plant regeneration might help us to enhance tissue culture optimization, with multiple applications in plant micropropagation and green biotechnology. In this review, we will provide additional insights into the physiological and molecular framework of plant regeneration, including both direct and indirect de novo organ formation and somatic embryogenesis, and we will discuss the key role of intrinsic and extrinsic constraints for cell reprogramming during plant regeneration.
Collapse
Grants
- BIO2015-64255-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- RTI2018-096505-B-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- AGL2017-82447-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- IDIFEDER 2018/016 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
- PROMETEO/2019/117 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
- ACIF/2018/220 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
Collapse
Affiliation(s)
- Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.C.); (P.S.T.)
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.C.); (P.S.T.)
| | | |
Collapse
|
47
|
Xu C, Hu Y. The molecular regulation of cell pluripotency in plants. ABIOTECH 2020; 1:169-177. [PMID: 36303568 PMCID: PMC9590476 DOI: 10.1007/s42994-020-00028-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Abstract
Plants have a remarkably regenerative capability to replace the damaged organs or form the new organs and individuals both in vivo and in vitro, which is fundamental for their developmental plasticity and the agricultural practices. The regenerative capacities of plants are highly dependent on the totipotency or pluripotency of somatic cells, whose fates are directed by phytohormones, wounding, and other stimuli. Recent studies have revealed that the two types of cellular reprogramming are involved in the acquisition of cell pluripotency during plant in vitro and in vivo regeneration programs. This review focuses on the recent advances of the cellular origin, molecular characteristic, and genetic and epigenetic regulations of cell pluripotency acquisition in plants, highlighting the molecular frameworks of cellular reprogramming activated by diverse stimuli and their possible potentials in regeneration-based plant biotechnologies.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,National Center for Plant Gene Research, Beijing, 100093 China
| |
Collapse
|
48
|
Du X, Fang T, Liu Y, Wang M, Zang M, Huang L, Zhen S, Zhang J, Shi Z, Wang G, Fu J, Liu Y. Global profiling of N 6 -methyladenosine methylation in maize callus induction. THE PLANT GENOME 2020; 13:e20018. [PMID: 33016611 DOI: 10.1002/tpg2.20018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 05/26/2023]
Abstract
Callus induction is a dedifferentiation process that accompanies a cell fate transition, and epigenetic regulation plays a crucial role in the process. N6 -methyladenosine (m6A) methylation is an important mechanism in post-transcriptional epigenetic regulation and functions in cell reprogramming. However, the function of m6A methylation during callus induction is still unknown. Here, we performed transcriptome-wide m6A-seq on immature maize embryos after culturing for 2, 4, or 8 days with or without the auxin analogue 2,4-D. A total of 26,794 unique m6A peaks were detected from 17,456 maize genes; and 2,338 specific, 2,4-D-induced m6A peaks (D-specific m6A) were detected only in embryos cultured with 2,4-D. Furthermore, a positive correlation between m6A methylation and mRNA abundance was discovered in the genes with D-specific m6A deposition, especially at the beginning of callus induction. Key genes involved in callus induction, i.e. BABY BOOM and LBD transcription factors, underwent m6A methylation, increasing their transcript levels, thus improving callus induction. These results revealed the importance of m6A methylation during the early stage of callus induction and provided new insights into the molecular mechanism of callus induction at an epitranscriptomic level.
Collapse
Affiliation(s)
- Xuemei Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Fang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Maosen Zang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liying Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Sihan Zhen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zichen Shi
- Beijing No.4 High School International Campus, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
Wang J, Yu C, Zhang S, Ye J, Dai H, Wang H, Huang J, Cao X, Ma J, Ma H, Wang Y. Cell-type-dependent histone demethylase specificity promotes meiotic chromosome condensation in Arabidopsis. NATURE PLANTS 2020; 6:823-837. [PMID: 32572214 DOI: 10.1038/s41477-020-0697-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/17/2020] [Indexed: 05/25/2023]
Abstract
Histone demethylation is crucial for proper chromatin structure and to ensure normal development, and requires the large family of Jumonji C (JmjC)-containing demethylases; however, the molecular mechanisms that regulate the substrate specificity of these JmjC-containing demethylases remain largely unknown. Here, we show that the substrate specificity of the Arabidopsis histone demethylase JMJ16 is broadened from Lys 4 of histone H3 (H3K4) alone in somatic cells to both H3K4 and H3K9 when it binds to the meiocyte-specific histone reader MMD1. Consistent with this, the JMJ16 catalytic domain exhibits both H3K4 and H3K9 demethylation activities. Moreover, the JMJ16 C-terminal FYR domain interacts with the JMJ16 catalytic domain and probably restricts its substrate specificity. By contrast, MMD1 can compete with the N-terminal catalytic domain of JMJ16 for binding to the FYR-C domain, thereby expanding the substrate specificity of JMJ16 by preventing the FYR domain from binding to the catalytic domain. We propose that MMD1 and JMJ16 together in male meiocytes promote gene expression in an H3K9me3-dependent manner and thereby contribute to meiotic chromosome condensation.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Chaoyi Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuaibin Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hang Dai
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Hong Ma
- Department of Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Cheng K, Xu Y, Yang C, Ouellette L, Niu L, Zhou X, Chu L, Zhuang F, Liu J, Wu H, Charron JB, Luo M. Histone tales: lysine methylation, a protagonist in Arabidopsis development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:793-807. [PMID: 31560751 DOI: 10.1093/jxb/erz435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Histone methylation plays a fundamental role in the epigenetic regulation of gene expression driven by developmental and environmental cues in plants, including Arabidopsis. Histone methyltransferases and demethylases act as 'writers' and 'erasers' of methylation at lysine and/or arginine residues of core histones, respectively. A third group of proteins, the 'readers', recognize and interpret the methylation marks. Emerging evidence confirms the crucial roles of histone methylation in multiple biological processes throughout the plant life cycle. In this review, we summarize the regulatory mechanisms of lysine methylation, especially at histone H3 tails, and focus on the recent advances regarding the roles of lysine methylation in Arabidopsis development, from seed performance to reproductive development, and in callus formation.
Collapse
Affiliation(s)
- Kai Cheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Luc Ouellette
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Longjian Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liutian Chu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Zhuang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, China
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, Guangdong, China
| | - Jean-Benoit Charron
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|