1
|
Liu J, Zhou SZ, Liu YL, Zhao BY, Yu D, Zhong MC, Jiang XD, Cui WH, Zhao JX, Qiu J, Liu LM, Guo ZH, Li HT, Tan DY, Hu JY, Li DZ. Genomes of Meniocus linifolius and Tetracme quadricornis reveal the ancestral karyotype and genomic features of core Brassicaceae. PLANT COMMUNICATIONS 2024; 5:100878. [PMID: 38475995 PMCID: PMC11287156 DOI: 10.1016/j.xplc.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bin-Yan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Qiu
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liang-Min Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dun-Yan Tan
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
2
|
Hendriks KP, Kiefer C, Al-Shehbaz IA, Bailey CD, Hooft van Huysduynen A, Nikolov LA, Nauheimer L, Zuntini AR, German DA, Franzke A, Koch MA, Lysak MA, Toro-Núñez Ó, Özüdoğru B, Invernón VR, Walden N, Maurin O, Hay NM, Shushkov P, Mandáková T, Schranz ME, Thulin M, Windham MD, Rešetnik I, Španiel S, Ly E, Pires JC, Harkess A, Neuffer B, Vogt R, Bräuchler C, Rainer H, Janssens SB, Schmull M, Forrest A, Guggisberg A, Zmarzty S, Lepschi BJ, Scarlett N, Stauffer FW, Schönberger I, Heenan P, Baker WJ, Forest F, Mummenhoff K, Lens F. Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr Biol 2023; 33:4052-4068.e6. [PMID: 37659415 DOI: 10.1016/j.cub.2023.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/22/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.
Collapse
Affiliation(s)
- Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany; Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands.
| | - Christiane Kiefer
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | - C Donovan Bailey
- Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM 88003, USA
| | - Alex Hooft van Huysduynen
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lachezar A Nikolov
- Department of Molecular, Cell and Developmental Biology, University of California, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, PO Box 6811, Cairns, QLD 4870, Australia
| | | | - Dmitry A German
- South-Siberian Botanical Garden, Altai State University, Barnaul, Lesosechnaya Ulitsa, 25, Barnaul, Altai Krai, Russia
| | - Andreas Franzke
- Heidelberg Botanic Garden, Heidelberg University, Im Neuenheimer Feld 361, 69120 Heidelberg, Germany
| | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Óscar Toro-Núñez
- Departamento de Botánica, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Barış Özüdoğru
- Department of Biology, Hacettepe University, Beytepe, Ankara 06800, Türkiye
| | - Vanessa R Invernón
- Sorbonne Université, Muséum National d'Histoire Naturelle, Institut de Systématique, Évolution, Biodiversité (ISYEB), CP 39, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - Nora Walden
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Nikolai M Hay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Philip Shushkov
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Mats Thulin
- Department of Organismal Biology, Uppsala University, Norbyvägen 18, 752 36 Uppsala, Sweden
| | | | - Ivana Rešetnik
- Department of Biology, University of Zagreb, Marulićev trg 20/II, 10000 Zagreb, Croatia
| | - Stanislav Španiel
- Institute of Botany, Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Dúbravská cesta 9, 845 23 Bratislava, Slovakia
| | - Elfy Ly
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - J Chris Pires
- Soil and Crop Sciences, Colorado State University, 307 University Ave., Fort Collins, CO 80523-1170, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Barbara Neuffer
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Robert Vogt
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Christian Bräuchler
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Heimo Rainer
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Steven B Janssens
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31 - box 2435, 3001 Leuven, Belgium; Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium
| | - Michaela Schmull
- Harvard University Herbaria, 22 Divinity Ave., Cambridge, MA 02138, USA
| | - Alan Forrest
- Centre for Middle Eastern Plants, Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Alessia Guggisberg
- ETH Zürich, Institut für Integrative Biologie, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Sue Zmarzty
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Brendan J Lepschi
- Australian National Herbarium, Centre for Australian National Biodiversity Research, Clunies Ross St, Acton, ACT 2601, Australia
| | - Neville Scarlett
- La Trobe University, Plenty Road and Kingsbury Dr., Bundoora, VIC 3086, Australia
| | - Fred W Stauffer
- Conservatory and Botanic Gardens of Geneva, CP 60, Chambésy, 1292 Geneva, Switzerland
| | - Ines Schönberger
- Manaaki Whenua Landcare Research, Allan Herbarium, PO Box 69040, Lincoln, New Zealand
| | - Peter Heenan
- Manaaki Whenua Landcare Research, Allan Herbarium, PO Box 69040, Lincoln, New Zealand
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| | - Frederic Lens
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Institute of Biology Leiden, Plant Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
3
|
Lysak MA. Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions. THE PLANT CELL 2022; 34:2475-2491. [PMID: 35441689 PMCID: PMC9252491 DOI: 10.1093/plcell/koac116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/13/2022] [Indexed: 05/04/2023]
Abstract
The evolution of eukaryotic genomes is accompanied by fluctuations in chromosome number, reflecting cycles of chromosome number increase (polyploidy and centric fissions) and decrease (chromosome fusions). Although all chromosome fusions result from DNA recombination between two or more nonhomologous chromosomes, several mechanisms of descending dysploidy are exploited by eukaryotes to reduce their chromosome number. Genome sequencing and comparative genomics have accelerated the identification of inter-genome chromosome collinearity and gross chromosomal rearrangements and have shown that end-to-end chromosome fusions (EEFs) and nested chromosome fusions (NCFs) may have played a more important role in the evolution of eukaryotic karyotypes than previously thought. The present review aims to summarize the limited knowledge on the origin, frequency, and evolutionary implications of EEF and NCF events in eukaryotes and especially in land plants. The interactions between nonhomologous chromosomes in interphase nuclei and chromosome (mis)pairing during meiosis are examined for their potential importance in the origin of EEFs and NCFs. The remaining open questions that need to be addressed are discussed.
Collapse
Affiliation(s)
- Martin A Lysak
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| |
Collapse
|
4
|
Molecular and Cytogenetic Analysis of rDNA Evolution in Crepis Sensu Lato. Int J Mol Sci 2022; 23:ijms23073643. [PMID: 35409003 PMCID: PMC8998684 DOI: 10.3390/ijms23073643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Although Crepis was the first model plant group in which chromosomal changes were considered to play an important role in speciation, their chromosome structure and evolution have been barely investigated using molecular cytogenetic methods. The aim of the study was to provide a better understanding of the patterns and directions of Crepis chromosome evolution, using comparative analyses of rDNA loci number and localisation. The chromosome base number and chromosomal organisation of 5S and 35S rDNA loci were analysed in the phylogenetic background for 39 species of Crepis, which represent the evolutionary lineages of Crepis sensu stricto and Lagoseris, including Lapsana communis. The phylogenetic relationships among all the species were inferred from nrITS and newly obtained 5S rDNA NTS sequences. Despite high variations in rDNA loci chromosomal organisation, most species had a chromosome with both rDNA loci within the same (usually short) chromosomal arm. The comparative analyses revealed several independent rDNA loci number gains and loci repositioning that accompanied diversification and speciation in Crepis. Some of the changes in rDNA loci patterns were reconstructed for the same evolutionary lineages as descending dysploidy.
Collapse
|
5
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
6
|
Bayat S, Lysak MA, Mandáková T. Genome structure and evolution in the cruciferous tribe Thlaspideae (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1768-1785. [PMID: 34661331 DOI: 10.1111/tpj.15542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Whole-genome duplications (WGDs) and chromosome rearrangements (CRs) play the key role in driving the diversification and evolution of plant lineages. Although the direct link between WGDs and plant diversification is well documented, relatively few studies focus on the evolutionary significance of CRs. The cruciferous tribe Thlaspideae represents an ideal model system to address the role of large-scale chromosome alterations in genome evolution, as most Thlaspideae species share the same diploid chromosome number (2n = 2x = 14). Here we constructed the genome structure in 12 Thlaspideae species, including field pennycress (Thlaspi arvense) and garlic mustard (Alliaria petiolata). We detected and precisely characterized genus- and species-specific CRs, mostly pericentric inversions, as the main genome-diversifying drivers in the tribe. We reconstructed the structure of seven chromosomes of an ancestral Thlaspideae genome, identified evolutionary stable chromosomes versus chromosomes prone to CRs, estimated the rate of CRs, and uncovered an allohexaploid origin of garlic mustard from diploid taxa closely related to A. petiolata and Parlatoria cakiloidea. Furthermore, we performed detailed bioinformatic analysis of the Thlaspideae repeatomes, and identified repetitive elements applicable as unique species- and genus-specific barcodes and chromosome landmarks. This study deepens our general understanding of the evolutionary role of CRs, particularly pericentric inversions, in plant genome diversification, and provides a robust base for follow-up whole-genome sequencing efforts.
Collapse
Affiliation(s)
- Soheila Bayat
- CEITEC, Masaryk University, Brno, 62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Martin A Lysak
- CEITEC, Masaryk University, Brno, 62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Terezie Mandáková
- CEITEC, Masaryk University, Brno, 62500, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| |
Collapse
|
7
|
Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation. Proc Natl Acad Sci U S A 2021; 118:2025711118. [PMID: 34649989 PMCID: PMC8545485 DOI: 10.1073/pnas.2025711118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 12/01/2022] Open
Abstract
Plants’ adaptations to and divergence in arid deserts have long fascinated scientists and the general public. Here, we present a genomic analysis of two congeneric desert plant species that clarifies their evolutionary history and shows that their common ancestor arose from a hybrid polyploidization, which provided genomic foundations for their survival in deserts. The whole-genome duplication was followed by translocation-based rearrangements of the ancestral chromosomes. Rapid evolution of genes in these reshuffled chromosomes contributed greatly to the divergences of the two species in desert microhabitats during which gene flow was continuous. Our results provide insights into plant adaptation in the arid deserts and highlight the significance of polyploidy-driven chromosomal structural variations in species divergence. Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus Pugionium (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.
Collapse
|
8
|
Guo X, Mandáková T, Trachtová K, Özüdoğru B, Liu J, Lysak MA. Linked by Ancestral Bonds: Multiple Whole-Genome Duplications and Reticulate Evolution in a Brassicaceae Tribe. Mol Biol Evol 2021; 38:1695-1714. [PMID: 33331908 PMCID: PMC8097306 DOI: 10.1093/molbev/msaa327] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pervasive hybridization and whole-genome duplications (WGDs) influenced genome evolution in several eukaryotic lineages. Although frequent and recurrent hybridizations may result in reticulate phylogenies, the evolutionary events underlying these reticulations, including detailed structure of the ancestral diploid and polyploid genomes, were only rarely reconstructed. Here, we elucidate the complex genomic history of a monophyletic clade from the mustard family (Brassicaceae), showing contentious relationships to the early-diverging clades of this model plant family. Genome evolution in the crucifer tribe Biscutelleae (∼60 species, 5 genera) was dominated by pervasive hybridizations and subsequent genome duplications. Diversification of an ancestral diploid genome into several divergent but crossable genomes was followed by hybridizations between these genomes. Whereas a single genus (Megadenia) remained diploid, the four remaining genera originated by allopolyploidy (Biscutella, Lunaria, Ricotia) or autopolyploidy (Heldreichia). The contentious relationships among the Biscutelleae genera, and between the tribe and other early diverged crucifer lineages, are best explained by close genomic relatedness among the recurrently hybridizing ancestral genomes. By using complementary cytogenomics and phylogenomics approaches, we demonstrate that the origin of a monophyletic plant clade can be more complex than a parsimonious assumption of a single WGD spurring postpolyploid cladogenesis. Instead, recurrent hybridization among the same and/or closely related parental genomes may phylogenetically interlink diploid and polyploid genomes despite the incidence of multiple independent WGDs. Our results provide new insights into evolution of early-diverging Brassicaceae lineages and elucidate challenges in resolving the contentious relationships within and between land plant lineages with pervasive hybridization and WGDs.
Collapse
Affiliation(s)
- Xinyi Guo
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Terezie Mandáková
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karolína Trachtová
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Barış Özüdoğru
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe, Ankara, Turkey
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Martin A Lysak
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Huang L, Ma Y, Jiang J, Li T, Yang W, Zhang L, Wu L, Feng L, Xi Z, Xu X, Liu J, Hu Q. A chromosome-scale reference genome of Lobularia maritima, an ornamental plant with high stress tolerance. HORTICULTURE RESEARCH 2020; 7:197. [PMID: 33328471 PMCID: PMC7705659 DOI: 10.1038/s41438-020-00422-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Lobularia maritima (L.) Desv. is an ornamental plant cultivated across the world. It belongs to the family Brassicaceae and can tolerate dry, poor and contaminated habitats. Here, we present a chromosome-scale, high-quality genome assembly of L. maritima based on integrated approaches combining Illumina short reads and Hi-C chromosome conformation data. The genome was assembled into 12 pseudochromosomes with a 197.70 Mb length, and it includes 25,813 protein-coding genes. Approximately 41.94% of the genome consists of repetitive sequences, with abundant long terminal repeat transposable elements. Comparative genomic analysis confirmed that L. maritima underwent a species-specific whole-genome duplication (WGD) event ~22.99 million years ago. We identified ~1900 species-specific genes, 25 expanded gene families, and 50 positively selected genes in L. maritima. Functional annotations of these genes indicated that they are mainly related to stress tolerance. These results provide new insights into the stress tolerance of L. maritima, and this genomic resource will be valuable for further genetic improvement of this important ornamental plant.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Yazhen Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Jiebei Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Lei Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Landi Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
10
|
Yang W, Zhang L, Mandáková T, Huang L, Li T, Jiang J, Yang Y, Lysak MA, Liu J, Hu Q. The chromosome-level genome sequence and karyotypic evolution of Megadenia pygmaea (Brassicaceae). Mol Ecol Resour 2020; 21:871-879. [PMID: 33151630 DOI: 10.1111/1755-0998.13291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
Karyotypic changes in chromosome number and structure are drivers in the divergent evolution of diverse plant species and lineages. This study aimed to reveal the origins of the unique karyotype (2n = 12) and phylogenetic relationships of the genus Megadenia (Brassicaceae). A high-quality chromosome-scale genome was assembled for Megadenia pygmaea using Nanopore long reads and high-throughput chromosome conformation capture (Hi-C). The assembled genome is 215.2 Mb and is anchored on six pseudochromosomes. We annotated a total of 25,607 high-confidence protein-coding genes and corroborated the phylogenetic affinity of Megadenia with the Brassicaceae expanded lineage II, containing numerous agricultural crops. We dated the divergence of Megadenia from its closest relatives to 27.04 (19.11-36.60) million years ago. A reconstruction of the chromosomal composition of the species was performed based on the de novo assembled genome and comparative chromosome painting analysis. The karyotype structure of M. pygmaea is very similar to the previously inferred proto-Calepineae karyotype (PCK; n = 7) of the lineage II. However, an end-to-end translocation between two ancestral chromosomes reduced the chromosome number from n = 7 to n = 6 in Megadenia. Our reference genome provides fundamental information for karyotypic evolution and evolutionary study of this genus.
Collapse
Affiliation(s)
- Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Li Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiebei Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland AgroEcosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,State Key Laboratory of Grassland AgroEcosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Ferraz ME, Fonsêca A, Pedrosa-Harand A. Multiple and independent rearrangements revealed by comparative cytogenetic mapping in the dysploid Leptostachyus group (Phaseolus L., Leguminosae). Chromosome Res 2020; 28:395-405. [PMID: 33191473 DOI: 10.1007/s10577-020-09644-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Polyploidy and dysploidy have been reported as the main events in karyotype evolution of plants. In the genus Phaseolus L. (2n = 22), a small monophyletic group of three species, the Leptostachyus group, presents a dysploid karyotype with 2n = 20. It was shown in Phaseolus leptostachyus that the dysploidy was caused by a nested chromosome fusion (NCF) accompanied by several translocations, suggesting a high rate of karyotype evolution in the group. To verify if this karyotype restructuring was a single event or occurred progressively during the evolution of this group, we analysed P. macvaughii, sister to Phaseolus micranthus + P. leptostachyus. Twenty-four genomic clones of P. vulgaris previously mapped on P. leptostachyus, in addition to the 5S and 35S rDNA probes, were used for fluorescence in situ hybridization. Only a single rearrangement was common to the two species: the nested chromosome fusion (NCF) involving chromosomes 10 and 11. The translocation of chromosome 2 is not the same found in P. leptostachyus, and pericentric inversions in chromosomed 3 and 4 were exclusive of P. macvaughii. The other rearrangements observed in P. leptostachyus were not shared with this species, suggesting that they occurred after the separation of these lineages. The presence of private rearrangements indicates a progressive accumulation of karyotype changes in the Leptostachyus group instead of an instant genome-wide repatterning.
Collapse
Affiliation(s)
- Maria Eduarda Ferraz
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, R. Prof. Moraes Rego, s/n, CDU, Recife, PE, 50670-420, Brazil
| | - Artur Fonsêca
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, R. Prof. Moraes Rego, s/n, CDU, Recife, PE, 50670-420, Brazil
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, R. Prof. Moraes Rego, s/n, CDU, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
12
|
Chen H, German DA, Al-Shehbaz IA, Yue J, Sun H. Phylogeny of Euclidieae (Brassicaceae) based on plastome and nuclear ribosomal DNA data. Mol Phylogenet Evol 2020; 153:106940. [PMID: 32818597 DOI: 10.1016/j.ympev.2020.106940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/19/2023]
Abstract
Euclidieae, a morphologically diverse tribe in the family Brassicaceae (Cruciferae), consists of 29 genera and more than 150 species distributed mainly in Asia. Prior phylogenetic analyses on Euclidieae are inadequate. In this study, sequence data from the plastid genome and nuclear ribosomal DNA of 72 species in 27 genera of Euclidieae were used to infer the inter- and intra-generic relationships within. The well-resolved and strongly supported plastome phylogenies revealed that Euclidieae could be divided into five clades. Both Cymatocarpus and Neotorularia are polyphyletic in nuclear and plastome phylogenies. Besides, the conflicts of systematic positions of three species of Braya and two species of Solms-laubachia s.l. indicated that hybridization and or introgression might have happened during the evolutionary history of the tribe. Results from divergence-time analyses suggested an early Miocene origin of Euclidieae, and it probably originated from the Central Asia, Pamir Plateau and West Himalaya. In addition, multiple ndh genes loss and pseudogenization were detected in eight species based on comparative genomic study.
Collapse
Affiliation(s)
- Hongliang Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Laboratory of Systematics & Evolutionary Botany and Biodiversity, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Dmitry A German
- South-Siberian Botanical Garden, Altai State University, Lenin Ave. 61, Barnaul 656049, Russia
| | | | - Jipei Yue
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
13
|
Alonso MÁ, Vicente A, Crespo MB. Diversification of Biscutella ser. Biscutella (Brassicaceae) followed post-Miocene geologic and climatic changes in the Mediterranean basin. Mol Phylogenet Evol 2020; 142:106644. [DOI: 10.1016/j.ympev.2019.106644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
|
14
|
Comparatively Barcoded Chromosomes of Brachypodium Perennials Tell the Story of Their Karyotype Structure and Evolution. Int J Mol Sci 2019; 20:ijms20225557. [PMID: 31703351 PMCID: PMC6888173 DOI: 10.3390/ijms20225557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022] Open
Abstract
The Brachypodium genus is an informative model system for studying grass karyotype organization. Previous studies of a limited number of species and reference chromosomes have not provided a comprehensive picture of the enigmatic phylogenetic relationships in the genus. Comparative chromosome barcoding, which enables the reconstruction of the evolutionary history of individual chromosomes and their segments, allowed us to infer the relationships between putative ancestral karyotypes of extinct species and extant karyotypes of current species. We used over 80 chromosome-specific BAC (bacterial artificial chromosome) clones derived from five reference chromosomes of B. distachyon as probes against the karyotypes of twelve accessions representing five diploid and polyploid Brachypodium perennials. The results showed that descending dysploidy is common in Brachypodium and occurs primarily via nested chromosome fusions. Brachypodiumdistachyon was rejected as a putative ancestor for allotetraploid perennials and B. stacei for B. mexicanum. We propose two alternative models of perennial polyploid evolution involving either the incorporation of a putative x = 5 ancestral karyotype with different descending dysploidy patterns compared to B. distachyon chromosomes or hybridization of two x = 9 ancestors followed by genome doubling and descending dysploidy. Details of the karyotype structure and evolution in several Brachypodium perennials are revealed for the first time.
Collapse
|
15
|
Susek K, Bielski W, Czyż KB, Hasterok R, Jackson SA, Wolko B, Naganowska B. Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution. Genes (Basel) 2019; 10:genes10040259. [PMID: 30939837 PMCID: PMC6523792 DOI: 10.3390/genes10040259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32–52), but also for the basic chromosome number (x = 5–9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinus angustifolius as the reference species. We applied set of L. angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L. angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Wojciech Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Katarzyna B Czyż
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA.
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| |
Collapse
|