1
|
Araújo-Lopes BGD, Basso MF, Carvalho TB, Montessoro P, Carneiro AK, Silva ACD, Lima MDF, Eloy NB, Silva FND, Thiebaut F, Bernado WDP, Campostrini E, Engler JDA, Santiago-Fernandes L, Grossi-de-Sa MF, Hemerly AS. The Multifunctional Anaphase Promoting Complex 7 (APC7) Gene Is Associated With Increased Plant Growth and Improved Resistance to DNA and RNA Viruses. PLANT, CELL & ENVIRONMENT 2025; 48:1768-1789. [PMID: 39497281 DOI: 10.1111/pce.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 02/04/2025]
Abstract
The anaphase promoting complex 7 (AtAPC7) is an APC/C subunit expressed in different organs of Arabidopsis thaliana and conserved among eukaryotes. A variant of the complete APC7 protein, containing its C-terminal region (named APC-CT), shows a high homology with a tobacco viral replication inhibitor (IVR-like) protein that reduces plant susceptibility to RNA viruses. Here, the role of the AtAPC7 gene was investigated by characterizing Arabidopsis plants overexpressing the full-length AtAPC7 (APC7OE) and the C-terminal portion (APC7-CTOE), by phenotypical, physiological and molecular approaches. APC7OE plants showed improved growth of vegetative organs, earlier flowering and increased photosynthetic efficiency, CO2 assimilation and productivity, compared with Col-0 control plants. Conversely, APC7-CTOE plants showed reduced susceptibility to both RNA and DNA viruses, along with an improvement in plant growth, although not surpassing APC7OE plants. Altogether, the data provide evidence for the role of the AtAPC7 in regulating cell division, expansion and differentiation, accompanied by an increase in photosynthetic capacity, resulting in enhanced plant biomass and seed yield. AtAPC7-CT might reduce growth-defence trade-offs, enabling plants to simultaneously defend themselves while promoting better growth. Our findings highlight the multifunctional role of AtAPC7, unveiling the potential of its orthologous genes as valuable biotechnological tools in important crops.
Collapse
Affiliation(s)
| | - Marcos Fernando Basso
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | | | | | - Aline Köhn Carneiro
- IBqM UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aline Cunha da Silva
- IBqM UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- IB- Microbiologia UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo de Freitas Lima
- IBqM UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- DBQ/IQ, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Fabio Nascimento da Silva
- DMB UFV, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- DFP UDESC, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - Flávia Thiebaut
- IBqM UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- GCM/EGB, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Wallace de Paula Bernado
- CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Eliemar Campostrini
- CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | | | - Maria Fatima Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | | |
Collapse
|
2
|
Furio RN, Fernández AC, Albornoz PL, Yonny ME, Toscano Adamo ML, Ruiz AI, Nazareno MA, Coll Y, Díaz-Ricci JC, Salazar SM. Mitigation strategy of saline stress in Fragaria vesca using natural and synthetic brassinosteroids as biostimulants. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23327. [PMID: 39413063 DOI: 10.1071/fp23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Bassinosteroids (BRs) can induce plant defence responses and promote plant growth. In this work, we evaluated the effect of a natural (EP24) and a synthetic (BB16) brassinosteroid on strawberry (Fragaria vesca ) plants exposed to saline stress. Treated plants showed higher shoot dry weight and root growth compared to untreated control plants. In BR-treated plants, crown diameters increased 66% and 40%, leaf area 148% and 112%, relative water content in leaves 84% and 61%, and SPAD values 24% and 26%, in response to BB16 and EP24, respectively. A marked stomatal closure, increased leaflet lignification, and a decrease in cortex thickness, root diameter and stele radius were also observed in treated plants. Treatments also reduces stress-induced damage, as plants showed a 34% decrease in malondialdehyde content and a lower proline content compared to control plants. A 22% and 15% increase in ascorbate peroxidase and total phenolic compound activities was observed in response to BB16, and a 24% increase in total flavonoid compound in response to both BRs, under stress conditions. These results allow us to propose the use of BRs as an environmentally safe crop management strategy to overcome salinity situations that severely affect crop yield.
Collapse
Affiliation(s)
- Ramiro N Furio
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Ana C Fernández
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Patricia L Albornoz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina; and Cátedra de Anatomía Vegetal, Fac. Ciencias Naturales e IML UNT, Tucumán CP4000, Argentina
| | - Melisa Evangelina Yonny
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - María Luisa Toscano Adamo
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Ana I Ruiz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina
| | - Mónica Azucena Nazareno
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Yamilet Coll
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana, Vedado CP10400, Cuba
| | - Juan C Díaz-Ricci
- Instituto de Química Biológica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, and Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán CPT4000ILI, Argentina
| | - Sergio M Salazar
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina; and Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán CP4000ACS, Argentina
| |
Collapse
|
3
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
4
|
Li J, Ren J, Lei X, Fan W, Tang L, Zhang Q, Bao Z, Zhou W, Bai J, Zhang Y, Gong C. CsREV-CsTCP4-CsVND7 module shapes xylem patterns differentially between stem and leaf to enhance tea plant tolerance to drought. Cell Rep 2024; 43:113987. [PMID: 38517888 DOI: 10.1016/j.celrep.2024.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
Cultivating drought-tolerant tea varieties enhances both yield and quality of tea plants in northern China. However, the mechanisms underlying their drought tolerance remain largely unknown. Here we identified a key regulator called CsREV, which differentially regulates xylem patterns between leaves and stems, thereby conferring drought tolerance in tea plants. When drought occurs, upregulation of CsREV activates the CsVND7a-dependent xylem vessel differentiation. However, when drought persists, the vessel differentiation is hindered as CsVND7a is downregulated by CsTCP4a. This, combined with the CsREV-promoted secondary-cell-wall thickness of xylem vessel, leads to the enhanced curling of leaves, a characteristic closely associated with plant drought tolerance. Notably, this inhibitory effect of CsTCP4a on CsVND7a expression is absent in stems, allowing stem xylem vessels to continuously differentiate. Overall, the CsREV-CsTCP4-CsVND7 module is differentially utilized to shape the xylem patterns in leaves and stems, potentially balancing water transportation and utilization to improve tea plant drought tolerance.
Collapse
Affiliation(s)
- Jiayang Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiejie Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingyu Lei
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenmin Fan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Tang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhulatai Bao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenfei Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuzhou Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Du P, Zhu YH, Weiner J, Sun Z, Li H, Feng T, Li FM. Reduced Root Cortical Tissue with an Increased Root Xylem Investment Is Associated with High Wheat Yields in Central China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1075. [PMID: 38674484 PMCID: PMC11054696 DOI: 10.3390/plants13081075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Trait-based approaches are increasingly used to understand crop yield improvement, although they have not been widely applied to anatomical traits. Little is known about the relationships between root and leaf anatomy and yield in wheat. We selected 20 genotypes that have been widely planted in Luoyang, in the major wheat-producing area of China, to explore these relationships. A field study was performed to measure the yields and yield components of the genotypes. Root and leaf samples were collected at anthesis to measure the anatomical traits relevant to carbon allocation and water transport. Yield was negatively correlated with cross-sectional root cortex area, indicating that reduced root cortical tissue and therefore reduced carbon investment have contributed to yield improvement in this region. Yield was positively correlated with root xylem area, suggesting that a higher water transport capacity has also contributed to increased yields in this study. The area of the leaf veins did not significantly correlate with yield, showing that the high-yield genotypes did not have larger veins, but they may have had a conservative water use strategy, with tight regulation of water loss from the leaves. This study demonstrates that breeding for higher yields in this region has changed wheat's anatomical traits, reducing the roots' cortical tissue and increasing the roots' xylem investment.
Collapse
Affiliation(s)
- Pengzhen Du
- School of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Yong-He Zhu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jacob Weiner
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark;
| | - Zhengli Sun
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Ecology, Lanzhou University, Lanzhou 730000, China; (Z.S.); (H.L.)
| | - Huiquan Li
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Ecology, Lanzhou University, Lanzhou 730000, China; (Z.S.); (H.L.)
| | - Tao Feng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Feng-Min Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Ecology, Lanzhou University, Lanzhou 730000, China; (Z.S.); (H.L.)
| |
Collapse
|
6
|
Xie H, Ye X, Liu C, Li D, Wang X, Xu C, Li C, Luo K, Fan D, Wu N. The microRNA7833-AUX6 module plays a critical role in wood development by modulating cellular auxin influx in Populus tomentosa. TREE PHYSIOLOGY 2024; 44:tpad153. [PMID: 38113530 DOI: 10.1093/treephys/tpad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The critical role of auxin on secondary vascular development in woody plants has been demonstrated. The concentration gradient of endogenous indole-3-acetic acid and the cellular and molecular pathways contributing to the auxin-directed vascular organization and wood growth have been uncovered in recent decades. However, our understanding of the roles and regulations of auxin influx in wood formation in trees remains limited. Here, we reported that a microRNA, miR7833, participates in the negative regulation of stem cambial cell division and secondary xylem development in Populus tomentosa. The miR7833 is mainly expressed in the vascular cambium during stem radical growth and specifically targets and represses two AUX/LAX family auxin influx carriers, AUX5 and AUX6, in poplar. We further revealed that poplar AUX6, the most abundant miR7833 target in the stem, is preferentially enriched in the developing xylem and is a positive regulator for cell division and differentiation events during wood formation. Moreover, inhibition of auxin influx carriers by 1-naphthoxyacetic acids abolished the regulatory effects of miR7833 and AUX6 on secondary xylem formation in poplar. Our results revealed the essential roles of the miR7833-AUX6 module in regulating cellular events in secondary xylem development and demonstrated an auxin influx-dependent mechanism for wood formation in poplar.
Collapse
Affiliation(s)
- Haiyan Xie
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chang Liu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dan Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Caofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Nengbiao Wu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Raineri J, Caraballo LN, Gómez M, Chan RL. The Transcription Factor HaHB11 Boosts Grain Set and Yield in Rice Plants, Allowing Them to Approach Their Ideal Phenotype. Biomolecules 2023; 13:biom13050826. [PMID: 37238696 DOI: 10.3390/biom13050826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The ideal rice phenotype is that of plants exhibiting fewer panicles with high biomass, large grain number, flag leaf area with small insertion angles, and an erected morphology improving light interception. The sunflower transcription factor HaHB11, homeodomain-leucine zipper I, confers increased seed yield and abiotic stress tolerance to Arabidopsis and maize. Here, we report the obtaining and characterization of rice plants expressing HaHB11 driven by its promoter or the 35S constitutive one. Transgenic p35S:HaHB11 plants closely resembled the ideal high-yield phenotype, whereas those carrying the pHaHB11:HaHB11 construct were hard to distinguish from the wild type. The former had an erected architecture, enhanced vegetative leaf biomass, rolled flag leaves with a larger surface, sharper insertion angles insensitive to brassinosteroids, and higher harvest index and seed biomass than the wild type. The combination of the distinct features exhibited by p35S:HaHB11 plants, including the increased number of set grains per panicle, supports the high-yield phenotype. We wondered where HaHB11 has to be expressed to achieve the high-yield phenotype and evaluated HaHB11 expression levels in all tissues. The results indicate that its expression is particularly necessary in the flag leaf and panicle to produce the ideal phenotype.
Collapse
Affiliation(s)
- Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| | - Luciano Nicolás Caraballo
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| | - Maximiliano Gómez
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| |
Collapse
|
8
|
Liu H, Zou M, Zhang B, Yang X, Yuan P, Ding G, Xu F, Shi L. Genome-wide association study identifies candidate genes and favorable haplotypes for seed yield in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:61. [PMID: 37313016 PMCID: PMC10248642 DOI: 10.1007/s11032-022-01332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
Oilseed rape (Brassica napus L.) is one of the most essential oil crops. Genetic improvement of seed yield (SY) is a major aim of B. napus breeding. Several studies have been reported on the genetic mechanisms of SY of B. napus. Here, a genome-wide association study (GWAS) of SY was conducted using a panel of 403 natural accessions of B. napus, with more than five million high-quality single-nucleotide polymorphisms (SNPs). A total of 1773 significant SNPs were detected associated with SY, and 783 significant SNPs were co-located with previously reported QTLs. The lead SNPs chrA01__8920351 and chrA02__4555979 were jointly detected in Trial 2_2 and Trial 2_mean value, and in Trial 1_2 and Trial 1_mean value, respectively. Subsequently, two candidate genes of BnaA01g17200D and BnaA02g08680D were identified through combining transcriptome, candidate gene association analysis, and haplotype analysis. BnaA09g10430D detected through lead SNP chrA09__5160639 was associated with SY of B. napus. Our results provide valuable information for studying the genetic control of seed yield in B. napus and valuable genes, haplotypes, and cultivars resources for the breeding of high seed yield B. napus cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01332-6.
Collapse
Affiliation(s)
- Haijiang Liu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Maoyan Zou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Bingbing Zhang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Xinyu Yang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Pan Yuan
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Guangda Ding
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Fangsen Xu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Lei Shi
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| |
Collapse
|
9
|
Li J, Xie L, Ren J, Zhang T, Cui J, Bao Z, Zhou W, Bai J, Gong C. CkREV regulates xylem vessel development in Caragana korshinskii in response to drought. FRONTIERS IN PLANT SCIENCE 2022; 13:982853. [PMID: 36092404 PMCID: PMC9453446 DOI: 10.3389/fpls.2022.982853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Drought stress poses severe threat to the development and even the survival status of plants. Plants utilize various methods responding to drought, among which the forming of more well-developed xylem in leaf vein in woody plants deserves our attention. Herein, we report a transcription factor CkREV from HD-ZIP III family in Caragana korshinskii, which possesses significant functions in drought response by regulating xylem vessel development in leaf vein. Research reveal that in C. korshinskii the expression level of CkREV located in xylem vessel and adjacent cells will increase as the level of drought intensifies, and can directly induce the expression of CkLAX3, CkVND6, CkVND7, and CkPAL4 by binding to their promoter regions. In Arabidopsis thaliana, CkREV senses changes in drought stress signals and bidirectionally regulates the expression of related genes to control auxin polar transport, vessel differentiation, and synthesis of cell wall deposits, thereby significantly enhancing plant drought tolerance. In conclusion, our findings offer a novel understanding of the regulation of CkREV, a determinant of leaf adaxial side, on the secondary development of xylem vessels in leaf vein to enhance stress tolerance in woody plants.
Collapse
Affiliation(s)
- Jiayang Li
- College of Horticulture, Northwest A&F University, Xianyang, Shaanxi, China
| | - Lifang Xie
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jiejie Ren
- College of Horticulture, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tianxin Zhang
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jinhao Cui
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Zhulatai Bao
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Wenfei Zhou
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Xianyang, Shaanxi, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
10
|
Tang S, Shahriari M, Xiang J, Pasternak T, Igolkina A, Aminizade S, Zhi H, Gao Y, Roodbarkelari F, Sui Y, Jia G, Wu C, Zhang L, Zhao L, Li X, Meshcheryakov G, Samsonova M, Diao X, Palme K, Teale W. The role of AUX1 during lateral root development in the domestication of the model C4 grass Setaria italica. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2021-2034. [PMID: 34940828 DOI: 10.1093/jxb/erab556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
C4 photosynthesis increases the efficiency of carbon fixation by spatially separating high concentrations of molecular oxygen from Rubisco. The specialized leaf anatomy required for this separation evolved independently many times. The morphology of C4 root systems is also distinctive and adapted to support high rates of photosynthesis; however, little is known about the molecular mechanisms that have driven the evolution of C4 root system architecture. Using a mutant screen in the C4 model plant Setaria italica, we identify Siaux1-1 and Siaux1-2 as root system architecture mutants. Unlike in S. viridis, AUX1 promotes lateral root development in S. italica. A cell by cell analysis of the Siaux1-1 root apical meristem revealed changes in the distribution of cell volumes in all cell layers and a dependence of the frequency of protophloem and protoxylem strands on SiAUX1. We explore the molecular basis of the role of SiAUX1 in seedling development using an RNAseq analysis of wild-type and Siaux1-1 plants and present novel targets for SiAUX1-dependent gene regulation. Using a selection sweep and haplotype analysis of SiAUX1, we show that Hap-2412TT in the promoter region of SiAUX1 is an allele which is associated with lateral root number and has been strongly selected for during Setaria domestication.
Collapse
Affiliation(s)
- Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mojgan Shahriari
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Jishan Xiang
- Academy of Agricultural Sciences/Key Laboratory of Regional Ecological Protection & Agricultural and Animal Husbandry Development, Chifeng University, Chifeng, 024000, Inner Mongolia, China
| | - Taras Pasternak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Anna Igolkina
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnic University, St. Petersburg, 195259, Russia
| | | | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanzhu Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Farshad Roodbarkelari
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linlin Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Georgy Meshcheryakov
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnic University, St. Petersburg, 195259, Russia
| | - Maria Samsonova
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnic University, St. Petersburg, 195259, Russia
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Klaus Palme
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
- Centre of Biological Systems Analysis and BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - William Teale
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
11
|
Spies FP, Raineri J, Miguel VN, Cho Y, Hong JC, Chan RL. The Arabidopsis transcription factors AtPHL1 and AtHB23 act together promoting carbohydrate transport from pedicel-silique nodes to seeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111133. [PMID: 35067303 DOI: 10.1016/j.plantsci.2021.111133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Carbohydrates are produced in green tissues through photosynthesis and then transported to sink tissues. Carbon partitioning is a strategic process, fine regulated, involving specific sucrose transporters in each connecting tissue. Here we report that a screening of an Arabidopsis transcription factor (TF) library using the homeodomain-leucine zipper I member AtHB23 as bait, allowed identifying the TF AtPHL1 interacting with the former. An independent Y2H assay, and in planta by BiFC, confirmed such interaction. AtHB23 and AtPHL1 coexpressed in the pedicel-silique nodes and the funiculus. Mutant plants (phl1, and amiR23) showed a marked reduction of lipid content in seeds, although lipid composition did not change compared to the wild type. While protein and carbohydrate contents were not significantly different between mutants and control mature seeds, we observed a reduced carbohydrate content in mutant plants young siliques (7 days after pollination). Moreover, using a CFDA probe, we revealed an impaired transport to the seeds, and the gene encoding the carbohydrate transporters SWEET10 and SWEET11, usually expressed in connecting tissues, was repressed in the amiR23 and phl1 mutant plants. Altogether, the results indicated that AtHB23 and AtPHL1 act together, promoting sucrose transport, and the lack of any of them provoked a reduction in seeds lipid content.
Collapse
Affiliation(s)
- Fiorella Paola Spies
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| | - Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| | - Virginia Natalí Miguel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| | - Yuhan Cho
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Jong Chan Hong
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea; Division of Plant Sciences, University of Missouri, Columbia, MO, 65211-7310, USA.
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| |
Collapse
|
12
|
Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Proc Natl Acad Sci U S A 2020; 117:21747-21756. [PMID: 32817425 DOI: 10.1073/pnas.2012245117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis AINTEGUMENTA (ANT), an AP2 transcription factor, is known to control plant growth and floral organogenesis. In this study, our transcriptome analysis and in situ hybridization assays of maize embryonic leaves suggested that maize ANT1 (ZmANT1) regulates vascular development. To better understand ANT1 functions, we determined the binding motif of ZmANT1 and then showed that ZmANT1 binds the promoters of millet SCR1, GNC, and AN3, which are key regulators of Kranz anatomy, chloroplast development, and plant growth, respectively. We generated a mutant with a single-codon deletion and two frameshift mutants of the ANT1 ortholog in the C4 millet Setaria viridis by the CRISPR/Cas9 technique. The two frameshift mutants displayed reduced photosynthesis efficiency and growth rate, smaller leaves, and lower grain yields than wild-type (WT) plants. Moreover, their leaves sporadically exhibited distorted Kranz anatomy and vein spacing. Conducting transcriptomic analysis of developing leaves in the WT and the three mutants we identified differentially expressed genes (DEGs) in the two frameshift mutant lines and found many down-regulated DEGs enriched in photosynthesis, heme, tetrapyrrole binding, and antioxidant activity. In addition, we predicted many target genes of ZmANT1 and chose 13 of them to confirm binding of ZmANT1 to their promoters. Based on the above observations, we proposed a model for ANT1 regulation of cell proliferation and leaf growth, vascular and vein development, chloroplast development, and photosynthesis through its target genes. Our study revealed biological roles of ANT1 in several developmental processes beyond its known roles in plant growth and floral organogenesis.
Collapse
|
13
|
Ribichich KF, Chiozza M, Ávalos-Britez S, Cabello JV, Arce AL, Watson G, Arias C, Portapila M, Trucco F, Otegui ME, Chan RL. Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3142-3156. [PMID: 32140724 PMCID: PMC7260725 DOI: 10.1093/jxb/eraa064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/07/2020] [Indexed: 05/10/2023]
Abstract
Soybean yield is limited primarily by abiotic constraints. No transgenic soybean with improved abiotic stress tolerance is commercially available. We transformed soybean plants with genetic constructs able to express the sunflower transcription factor HaHB4, which confers drought tolerance to Arabidopsis and wheat. One line (b10H) carrying the sunflower promoter was chosen among three independent lines because it exhibited the best performance in seed yield, and was evaluated in the greenhouse and in 27 field trials in different environments in Argentina. In greenhouse experiments, transgenic plants showed increased seed yield under stress conditions together with greater epicotyl diameter, larger xylem area, and increased water use efficiency compared with controls. They also exhibited enhanced seed yield in warm and dry field conditions. This response was accompanied by an increase in seed number that was not compensated by a decrease in individual seed weight. Transcriptome analysis of plants from a field trial with maximum difference in seed yield between genotypes indicated the induction of genes encoding redox and heat shock proteins in b10H. Collectively, our results indicate that soybeans transformed with HaHB4 are expected to have a reduced seed yield penalty when cultivated in warm and dry conditions, which constitute the best target environments for this technology.
Collapse
Affiliation(s)
- Karina F Ribichich
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | | | - Selva Ávalos-Britez
- Estación Experimental Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Pergamino, Argentina
| | - Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Augustin L Arce
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | | | - Claudia Arias
- CIFASIS, Universidad Nacional de Rosario – CONICET, Rosario, Argentina
| | | | | | - Maria E Otegui
- CONICET-INTA-FAUBA, Estación Experimental Pergamino, Facultad de Agronomía Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| |
Collapse
|