1
|
Dev W, Sultana F, Li H, Hu D, Peng Z, He S, Zhang H, Waqas M, Geng X, Du X. Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112390. [PMID: 39827949 DOI: 10.1016/j.plantsci.2025.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Cold stress has a huge impact on the growth and development of cotton, presenting a significant challenge to its productivity. Comprehending the complex molecular mechanisms that control the reaction to CS is necessary for developing tactics to improve cold tolerance in cotton. This review paper explores how cotton responds to cold stress by regulating gene expression, focusing on both activating and repressing specific genes. We investigate the essential roles that transcription factors and regulatory elements have in responding to cold stress and controlling gene expression to counteract the negative impacts of low temperatures. Through a comprehensive examination of new publications, we clarify the intricacies of transcriptional reprogramming induced by cold stress, emphasizing the connections between different regulatory elements and signaling pathways. Additionally, we investigate the consecutive effects of cold stress on cotton yield, highlighting the physiological and developmental disturbances resulting from extended periods of low temperatures. The knowledge obtained from this assessment allows for a more profound comprehension of the molecular mechanisms that regulate cold stress responses, suggesting potential paths for future research to enhance cold tolerance in cotton by utilizing targeted genetic modifications and biotechnological interventions.
Collapse
Affiliation(s)
- Washu Dev
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fahmida Sultana
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haobo Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Waqas
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoli Geng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China.
| |
Collapse
|
2
|
Zhang Q, Shen L, Lin F, Liao Q, Xiao S, Zhang W. Anionic phospholipid-mediated transmembrane transport and intracellular membrane trafficking in plant cells. THE NEW PHYTOLOGIST 2025; 245:1386-1402. [PMID: 39639545 DOI: 10.1111/nph.20329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Cellular membranes primarily consist of proteins and lipids. These proteins perform cellular functions such as metabolic regulation, environmental and hormonal signal sensing, and nutrient transport. There is increasing experimental evidence that certain lipids, particularly anionic phospholipids, can act as signaling molecules. Specific examples of functional regulation by anionic phospholipids in plant cells have been reported for transporters, channels, and even receptors. By regulating the structure and activity of membrane-integral proteins, these phospholipids mediate the transport of phytohormones and ions, and elicit physiological responses to developmental and environmental cues. Phospholipids also control membrane protein abundance and lipid composition and abundance by facilitating vesicular trafficking. In this review, we discuss recent research that elucidates the mechanisms by which membrane-integral transporters and channels are controlled via phospholipid signaling, as well as the regulation of membrane protein accumulation by phospholipids through coordinated removal, recycling, and degradation processes.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Like Shen
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Lin
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Liao
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenhua Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Laboratory, Nanjing, 210095, China
| |
Collapse
|
3
|
Tian Q, Yu T, Dong M, Hu Y, Chen X, Xue Y, Fang Y, Zhang J, Zhang X, Xue D. Identification and Characterization of Shaker Potassium Channel Gene Family and Response to Salt and Chilling Stress in Rice. Int J Mol Sci 2024; 25:9728. [PMID: 39273675 PMCID: PMC11395327 DOI: 10.3390/ijms25179728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Shaker potassium channel proteins are a class of voltage-gated ion channels responsible for K+ uptake and translocation, playing a crucial role in plant growth and salt tolerance. In this study, bioinformatic analysis was performed to identify the members within the Shaker gene family. Moreover, the expression patterns of rice Shaker(OsShaker) K+ channel genes were analyzed in different tissues and salt treatment by RT-qPCR. The results revealed that there were eight OsShaker K+ channel genes distributed on chromosomes 1, 2, 5, 6 and 7 in rice, and their promoters contained a variety of cis-regulatory elements, including hormone-responsive, light-responsive, and stress-responsive elements, etc. Most of the OsShaker K+ channel genes were expressed in all tissues of rice, but at different levels in different tissues. In addition, the expression of OsShaker K+ channel genes differed in the timing, organization and intensity of response to salt and chilling stress. In conclusion, our findings provide a reference for the understanding of OsShaker K+ channel genes, as well as their potential functions in response to salt and chilling stress in rice.
Collapse
Affiliation(s)
- Quanxiang Tian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Tongyuan Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengyuan Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoguang Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Amokrane L, Pokotylo I, Acket S, Ducloy A, Troncoso-Ponce A, Cacas JL, Ruelland E. Phospholipid Signaling in Crop Plants: A Field to Explore. PLANTS (BASEL, SWITZERLAND) 2024; 13:1532. [PMID: 38891340 PMCID: PMC11174929 DOI: 10.3390/plants13111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
In plant models such as Arabidopsis thaliana, phosphatidic acid (PA), a key molecule of lipid signaling, was shown not only to be involved in stress responses, but also in plant development and nutrition. In this article, we highlight lipid signaling existing in crop species. Based on open access databases, we update the list of sequences encoding phospholipases D, phosphoinositide-dependent phospholipases C, and diacylglycerol-kinases, enzymes that lead to the production of PA. We show that structural features of these enzymes from model plants are conserved in equivalent proteins from selected crop species. We then present an in-depth discussion of the structural characteristics of these proteins before focusing on PA binding proteins. For the purpose of this article, we consider RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), the most documented PA target proteins. Finally, we present pioneering experiments that show, by different approaches such as monitoring of gene expression, use of pharmacological agents, ectopic over-expression of genes, and the creation of silenced mutants, that lipid signaling plays major roles in crop species. Finally, we present major open questions that require attention since we have only a perception of the peak of the iceberg when it comes to the exciting field of phospholipid signaling in plants.
Collapse
Affiliation(s)
- Lucas Amokrane
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
| | - Igor Pokotylo
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin (IJPB), University Paris-Saclay, 78000 Versailles, France (J.-L.C.)
| | - Sébastien Acket
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
| | - Amélie Ducloy
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin (IJPB), University Paris-Saclay, 78000 Versailles, France (J.-L.C.)
| | - Adrian Troncoso-Ponce
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
| | - Jean-Luc Cacas
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin (IJPB), University Paris-Saclay, 78000 Versailles, France (J.-L.C.)
| | - Eric Ruelland
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
| |
Collapse
|
5
|
Qi F, Li J, Ai Y, Shangguan K, Li P, Lin F, Liang Y. DGK5β-derived phosphatidic acid regulates ROS production in plant immunity by stabilizing NADPH oxidase. Cell Host Microbe 2024; 32:425-440.e7. [PMID: 38309260 DOI: 10.1016/j.chom.2024.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
In plant immunity, phosphatidic acid (PA) regulates reactive oxygen species (ROS) by binding to respiratory burst oxidase homolog D (RBOHD), an NADPH oxidase responsible for ROS production. Here, we analyze the influence of PA binding on RBOHD activity and the mechanism of RBOHD-bound PA generation. PA binding enhances RBOHD protein stability by inhibiting vacuolar degradation, thereby increasing chitin-induced ROS production. Mutations in diacylglycerol kinase 5 (DGK5), which phosphorylates diacylglycerol to produce PA, impair chitin-induced PA and ROS production. The DGK5 transcript DGK5β (but not DGK5α) complements reduced PA and ROS production in dgk5-1 mutants, as well as resistance to Botrytis cinerea. Phosphorylation of S506 residue in the C-terminal calmodulin-binding domain of DGK5β contributes to the activation of DGK5β to produce PA. These findings suggest that DGK5β-derived PA regulates ROS production by inhibiting RBOHD protein degradation, elucidating the role of PA-ROS interplay in immune response regulation.
Collapse
Affiliation(s)
- Fan Qi
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Li
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Yingfei Ai
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Keke Shangguan
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Ping Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China
| | - Fucheng Lin
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China.
| | - Yan Liang
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Cao H, Liu Q, Liu X, Ma Z, Zhang J, Li X, Shen L, Yuan J, Zhang Q. Phosphatidic acid regulates ammonium uptake by interacting with AMMONIUM TRANSPORTER 1;1 in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:1954-1969. [PMID: 37471275 DOI: 10.1093/plphys/kiad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Ammonium (NH4+) is a key inorganic nitrogen source in cellular amino acid biosynthesis. The coupling of transcriptional and posttranslational regulation of AMMONIUM TRANSPORTER (AMT) ensures that NH4+ acquisition by plant roots is properly balanced, which allows for rapid adaptation to a variety of nitrogen conditions. Here, we report that phospholipase D (PLD)-derived phosphatidic acid (PA) interacts with AMT1;1 to mediate NH4+ uptake in Arabidopsis (Arabidopsis thaliana). We examined pldα1 pldδ-knockout mutants and found that a reduced PA level increased seedling growth under nitrogen deficiency and inhibited root growth upon NH4+ stress, which was consistent with the enhanced accumulation of cellular NH4+. PA directly bound to AMT1;1 and inhibited its transport activity. Mutation of AMT1;1 R487 to Gly (R487G) resulted in abolition of PA suppression and, subsequently, enhancement of ammonium transport activity in vitro and in vivo. Observations of AMT1;1-GFP showed suppressed endocytosis under PLD deficiency or by mutation of the PA-binding site in AMT1;1. Endocytosis was rescued by PA in the pldα1 pldδ mutant but not in the mutant AMT1;1R487G-GFP line. Together, these findings demonstrated PA-based shutoff control of plant NH4+ transport and point to a broader paradigm of lipid-transporter function.
Collapse
Affiliation(s)
- Hongwei Cao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaokun Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jixiu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuebing Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Like Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Shen L, Fan W, Li N, Wu Q, Chen D, Luan J, Zhang G, Tian Q, Jing W, Zhang Q, Zhang W. Rice potassium transporter OsHAK18 mediates phloem K + loading and redistribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:201-216. [PMID: 37381632 DOI: 10.1111/tpj.16371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
High-affinity K+ transporters/K+ uptake permeases/K+ transporters (HAK/KUP/KT) are important pathways mediating K+ transport across cell membranes, which function in maintaining K+ homeostasis during plant growth and stress response. An increasing number of studies have shown that HAK/KUP/KT transporters play crucial roles in root K+ uptake and root-to-shoot translocation. However, whether HAK/KUP/KT transporters also function in phloem K+ translocation remain unclear. In this study, we revealed that a phloem-localized rice HAK/KUP/KT transporter, OsHAK18, mediated cell K+ uptake when expressed in yeast, Escherichia coli and Arabidopsis. It was localized at the plasma membrane. Disruption of OsHAK18 rendered rice seedlings insensitive to low-K+ (LK) stress. After LK stress, some WT leaves showed severe wilting and chlorosis, whereas the corresponding leaves of oshak18 mutant lines (a Tos17 insertion line and two CRISPR lines) remained green and unwilted. Compared with WT, the oshak18 mutants accumulated more K+ in shoots but less K+ in roots after LK stress, leading to a higher shoot/root ratio of K+ per plant. Disruption of OsHAK18 does not affect root K+ uptake and K+ level in xylem sap, but it significantly decreases phloem K+ concentration and inhibits root-to-shoot-to-root K+ (Rb+ ) translocation in split-root assay. These results reveal that OsHAK18 mediates phloem K+ loading and redistribution, whose disruption is in favor of shoot K+ retention under LK stress. Our findings expand the understanding of HAK/KUP/KT transporters' functions and provide a promising strategy for improving rice tolerance to K+ deficiency.
Collapse
Affiliation(s)
- Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenxia Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junxia Luan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gangao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quanxiang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Dutta D. Interplay between membrane proteins and membrane protein-lipid pertaining to plant salinity stress. Cell Biochem Funct 2023. [PMID: 37158622 DOI: 10.1002/cbf.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
High salinity in agricultural lands is one of the predominant issues limiting agricultural yields. Plants have developed several mechanisms to withstand salinity stress, but the mechanisms are not effective enough for most crops to prevent and persist the salinity stress. Plant salt tolerance pathways involve membrane proteins that have a crucial role in sensing and mitigating salinity stress. Due to a strategic location interfacing two distinct cellular environments, membrane proteins can be considered checkpoints to the salt tolerance pathways in plants. Related membrane proteins functions include ion homeostasis, osmosensing or ion sensing, signal transduction, redox homeostasis, and small molecule transport. Therefore, modulating plant membrane proteins' function, expression, and distribution can improve plant salt tolerance. This review discusses the membrane protein-protein and protein-lipid interactions related to plant salinity stress. It will also highlight the finding of membrane protein-lipid interactions from the context of recent structural evidence. Finally, the importance of membrane protein-protein and protein-lipid interaction is discussed, and a future perspective on studying the membrane protein-protein and protein-lipid interactions to develop strategies for improving salinity tolerance is proposed.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
9
|
Li J, Shen L, Han X, He G, Fan W, Li Y, Yang S, Zhang Z, Yang Y, Jin W, Wang Y, Zhang W, Guo Y. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress. EMBO J 2023; 42:e112401. [PMID: 36811145 PMCID: PMC10106984 DOI: 10.15252/embj.2022112401] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The maintenance of sodium/potassium (Na+ /K+ ) homeostasis in plant cells is essential for salt tolerance. Plants export excess Na+ out of cells mainly through the Salt Overly Sensitive (SOS) pathway, activated by a calcium signal; however, it is unknown whether other signals regulate the SOS pathway and how K+ uptake is regulated under salt stress. Phosphatidic acid (PA) is emerging as a lipid signaling molecule that modulates cellular processes in development and the response to stimuli. Here, we show that PA binds to the residue Lys57 in SOS2, a core member of the SOS pathway, under salt stress, promoting the activity and plasma membrane localization of SOS2, which activates the Na+ /H+ antiporter SOS1 to promote the Na+ efflux. In addition, we reveal that PA promotes the phosphorylation of SOS3-like calcium-binding protein 8 (SCaBP8) by SOS2 under salt stress, which attenuates the SCaBP8-mediated inhibition of Arabidopsis K+ transporter 1 (AKT1), an inward-rectifying K+ channel. These findings suggest that PA regulates the SOS pathway and AKT1 activity under salt stress, promoting Na+ efflux and K+ influx to maintain Na+ /K+ homeostasis.
Collapse
Affiliation(s)
- Jianfang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Xiuli Han
- School of Life Sciences and MedicineShandong University of TechnologyZiboChina
| | - Gefeng He
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wenxia Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Shiping Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
- State Key Laboratory of Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Weiwei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
- National Maize Improvement Center of China and Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
10
|
Wang N, Shi Y, Jiang Q, Li H, Fan W, Feng Y, Li L, Liu B, Lin F, Jing W, Zhang W, Shen L. A 14-3-3 protein positively regulates rice salt tolerance by stabilizing phospholipase C1. PLANT, CELL & ENVIRONMENT 2023; 46:1232-1248. [PMID: 36539986 DOI: 10.1111/pce.14520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/06/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The phosphatidylinositol-specific phospholipase Cs (PI-PLCs) catalyze the hydrolysis of phosphatidylinositols, which play crucial roles in signaling transduction during plant development and stress response. However, the regulation of PI-PLC is still poorly understood. A previous study showed that a rice PI-PLC, OsPLC1, was essential to rice salt tolerance. Here, we identified a 14-3-3 protein, OsGF14b, as an interaction partner of OsPLC1. Similar to OsPLC1, OsGF14b also positively regulates rice salt tolerance, and their interaction can be promoted by NaCl stress. OsGF14b also positively regulated the hydrolysis activity of OsPLC1, and is essential to NaCl-induced activation of rice PI-PLCs. We further discovered that OsPLC1 was degraded via ubiquitin-proteasome pathway, and OsGF14b could inhibit the ubiquitination of OsPLC1 to protect OsPLC1 from degradation. Under salt stress, the OsPLC1 protein level in osgf14b was lower than the corresponding value of WT, whereas overexpression of OsGF14b results in a significant increase of OsPLC1 stability. Taken together, we propose that OsGF14b can interact with OsPLC1 and promote its activity and stability, thereby improving rice salt tolerance. This study provides novel insights into the important roles of 14-3-3 proteins in regulating protein stability and function in response to salt stress.
Collapse
Affiliation(s)
- Ningna Wang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiyuan Shi
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qun Jiang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huan Li
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenxia Fan
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Feng
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Li Li
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feng Lin
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenhua Zhang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Like Shen
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Huang Y, Chen X, Pan G, Wang F, Chen C, Lin X. 5-Nitro-2-(3-phenylpropylamino) Benzoic Acid Promotes Lipopolysaccharide-induced Inflammation via p38 MAPK Pathway in RAW264.7 Macrophages. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1261.1270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K +) transport proteins in plants. Int J Biol Macromol 2022; 208:844-857. [PMID: 35367275 DOI: 10.1016/j.ijbiomac.2022.03.179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.
Collapse
Affiliation(s)
- Ankit Ankit
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
13
|
Zhang R, Dong Q, Zhao P, Eickelkamp A, Ma C, He G, Li F, Wallrad L, Becker T, Li Z, Kudla J, Tian X. The potassium channel GhAKT2bD is regulated by CBL-CIPK calcium signaling complexes and facilitates K + allocation in cotton. FEBS Lett 2022; 596:1904-1920. [PMID: 35561107 DOI: 10.1002/1873-3468.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
Efficient allocation of the essential nutrient potassium (K+ ) is a central determinant of plant ion homeostasis and involves AKT2 K+ channels. Here, we characterize four AKT2 K+ channels from cotton and report that xylem and phloem expressed GhAKT2bD facilitates K+ allocation and that AKT2-silencing impairs plant growth and development. We uncover kinase activity-dependent activation of GhAKT2bD-mediated K+ uptake by AtCBL4-GhCIPK1 calcium signaling complexes in HEK293T cells. Moreover, AtCBL4-AtCIPK6 complexes known to convey activation of AtAKT2 in Arabidopsis also activate cotton GhAKT2bD in HEK293T cells. Collectively, these findings reveal an essential role for AKT2 in the source-sink allocation of K+ in cotton and identify GhAKT2bD as subject to complex regulation by CBL-CIPK Ca2+ sensor-kinase complexes.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.,Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Qiuyan Dong
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Panpan Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Anna Eickelkamp
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Chunmin Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Gefeng He
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Lukas Wallrad
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Tobias Becker
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. Int J Mol Sci 2022; 23:ijms23063227. [PMID: 35328648 PMCID: PMC8954910 DOI: 10.3390/ijms23063227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells sense a variety of extracellular signals balancing their metabolism and physiology according to changing growth conditions. Plasma membranes are the outermost informational barriers that render cells sensitive to regulatory inputs. Membranes are composed of different types of lipids that play not only structural but also informational roles. Hormones and other regulators are sensed by specific receptors leading to the activation of lipid metabolizing enzymes. These enzymes generate lipid second messengers. Among them, phosphatidic acid (PA) is a well-known intracellular messenger that regulates various cellular processes. This lipid affects the functional properties of cell membranes and binds to specific target proteins leading to either genomic (affecting transcriptome) or non-genomic responses. The subsequent biochemical, cellular and physiological reactions regulate plant growth, development and stress tolerance. In the present review, we focus on primary (genome-independent) signaling events triggered by rapid PA accumulation in plant cells and describe the functional role of PA in mediating response to hormones and hormone-like regulators. The contributions of individual lipid signaling enzymes to the formation of PA by specific stimuli are also discussed. We provide an overview of the current state of knowledge and future perspectives needed to decipher the mode of action of PA in the regulation of cell functions.
Collapse
|
15
|
Liu C, Liao W. Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:110-121. [PMID: 35123248 DOI: 10.1016/j.plaphy.2022.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Potassium ion (K+) has been regarded as an essential signaling in plant growth and development. K+ transporters and channels at transcription and protein levels have been made great progress. K+ can enhance plant abiotic stress resistance. Meanwhile, it is now clear that calcium (Ca2+), reactive oxygen species (ROS), and reactive nitrogen species (RNS) act as signaling molecules in plants. They regulate plant growth and development and mediate K+ transport. However, the interaction of K+ with these signaling molecules remains unclear. K+ may crosstalk with Ca2+ and ROS/RNS in abiotic stress responses in plants. Also, there are interactions among K+, Ca2+, and ROS/RNS signaling pathways in plant growth, development, and abiotic stress responses. They regulate ion homeostasis, antioxidant system, and stress resistance-related gene expression in plants. Future work needs to focus on the deeper understanding of molecular mechanism of crosstalk among K+, Ca2+, and ROS/RNS under abiotic stress.
Collapse
Affiliation(s)
- Chan Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| |
Collapse
|
16
|
Song C, Wu M, Zhou Y, Gong Z, Yu W, Zhang Y, Yang Z. NAC-mediated membrane lipid remodeling negatively regulates fruit cold tolerance. HORTICULTURE RESEARCH 2022; 9:uhac039. [PMID: 35531317 PMCID: PMC9071380 DOI: 10.1093/hr/uhac039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/06/2022] [Indexed: 05/11/2023]
Abstract
Low temperatures are known to destroy cell membranes' structural integrity by affecting the remodeling of their phospholipids. Fruits stored at low temperature are prone to chilling injury, characterized by discoloration, absence of ripening, surface pitting, growth inhibition, flavor loss, decay, and wilting. Phosphatidic acid, a vital second-messenger lipid in plants, is known to accumulate in response to different kinds of stress stimuli. However, the regulatory mechanism of its production from the degradation of phospholipids remains poorly understood. We identified two cold-responsive NAC (NAM/ATAF1/CUC2) transcription factors from bananas, namely, MaNAC25 and MaNAC28, which negatively regulated cold tolerance in banana fruits by upregulating the expression of phospholipid degradation genes in banana fruits. Furthermore, MaNAC25 and MaNAC28 formed a positive feedback loop to induce phospholipid degradation and produce phosphatidic acid. In contrast, ethylene directly inhibited the degradation of phospholipids in banana and transgenic tomato fruits. In addition, ethylene reduced the activity of MaNAC25 and MaNAC28, thereby inhibiting phospholipid degradation. To conclude, NAC-mediated membrane lipid remodeling negatively regulates the cold tolerance of banana and transgenic tomato fruits.
Collapse
Affiliation(s)
- Chunbo Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | |
Collapse
|
17
|
Li L, Li N, Qi X, Bai Y, Chen Q, Fang H, Yu X, Liu D, Liang C, Zhou Y. Characterization of the Glehnia littoralis Non-specific Phospholipase C Gene GlNPC3 and Its Involvement in the Salt Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:769599. [PMID: 34956268 PMCID: PMC8695444 DOI: 10.3389/fpls.2021.769599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Glehnia littoralis is a medicinal halophyte that inhabits sandy beaches and has high ecological and commercial value. However, the molecular mechanism of salt adaptation in G. littoralis remains largely unknown. Here, we cloned and identified a non-specific phospholipase C gene (GlNPC3) from G. littoralis, which conferred lipid-mediated signaling during the salt stress response. The expression of GlNPC3 was induced continuously by salt treatment. Overexpression of GlNPC3 in Arabidopsis thaliana increased salt tolerance compared to wild-type (WT) plants. GlNPC3-overexpressing plants had longer roots and higher fresh and dry masses under the salt treatment. The GlNPC3 expression pattern revealed that the gene was expressed in most G. littoralis tissues, particularly in roots. The subcellular localization of GlNPC3 was mainly at the plasma membrane, and partially at the tonoplast. GlNPC3 hydrolyzed common membrane phospholipids, such as phosphotidylserine (PS), phosphoethanolamine (PE), and phosphocholine (PC). In vitro enzymatic assay showed salt-induced total non-specific phospholipase C (NPC) activation in A. thaliana GlNPC3-overexpressing plants. Plant lipid profiling showed a significant change in the membrane-lipid composition of A. thaliana GlNPC3-overexpressing plants compared to WT after the salt treatment. Furthermore, downregulation of GlNPC3 expression by virus-induced gene silencing in G. littoralis reduced the expression levels of some stress-related genes, such as SnRK2, P5SC5, TPC1, and SOS1. Together, these results indicated that GlNPC3 and GlNPC3-mediated membrane lipid change played a positive role in the response of G. littoralis to a saline environment.
Collapse
Affiliation(s)
- Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Naiwei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiwu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yang Bai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Qiutong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xu Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Dongmei Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chengyuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yifeng Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
18
|
Huang YN, Yang SY, Li JL, Wang SF, Wang JJ, Hao DL, Su YH. The rectification control and physiological relevance of potassium channel OsAKT2. PLANT PHYSIOLOGY 2021; 187:2296-2310. [PMID: 34601582 PMCID: PMC8644434 DOI: 10.1093/plphys/kiab462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 05/14/2023]
Abstract
AKT2 potassium (K+) channels are members of the plant Shaker family which mediate dual-directional K+ transport with weak voltage-dependency. Here we show that OsAKT2 of rice (Oryza sativa) functions mainly as an inward rectifier with strong voltage-dependency and acutely suppressed outward activity. This is attributed to the presence of a unique K191 residue in the S4 domain. The typical bi-directional leak-like property was restored by a single K191R mutation, indicating that this functional distinction is an intrinsic characteristic of OsAKT2. Furthermore, the opposite R195K mutation of AtAKT2 changed the channel to an inward-rectifier similar to OsAKT2. OsAKT2 was modulated by OsCBL1/OsCIPK23, evoking the outward activity and diminishing the inward current. The physiological relevance in relation to the rectification diversity of OsAKT2 was addressed by functional assembly in the Arabidopsis (Arabidopsis thaliana) akt2 mutant. Overexpression (OE) of OsAKT2 complemented the K+ deficiency in the phloem sap and leaves of the mutant plants but did not significantly contribute to the transport of sugars. However, the expression of OsAKT2-K191R overcame both the shortage of phloem K+ and sucrose of the akt2 mutant, which was comparable to the effects of the OE of AtAKT2, while the expression of the inward mutation AtAKT2-R195K resembled the effects of OsAKT2. Additionally, OE of OsAKT2 ameliorated the salt tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Ya-Nan Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun-Ying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun-Lin Li
- Shandong Institute of Sericulture, Yantai 264002, China
| | - Shao-Fei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jia-Jin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Li Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yan-Hua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Author for communication:
| |
Collapse
|
19
|
Lhamo D, Wang C, Gao Q, Luan S. Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Curr Genomics 2021; 22:164-180. [PMID: 34975289 PMCID: PMC8640845 DOI: 10.2174/1389202922666210225083634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).
Collapse
Affiliation(s)
- Dhondup Lhamo
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qifei Gao
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
20
|
Tian Q, Shen L, Luan J, Zhou Z, Guo D, Shen Y, Jing W, Zhang B, Zhang Q, Zhang W. Rice shaker potassium channel OsAKT2 positively regulates salt tolerance and grain yield by mediating K + redistribution. PLANT, CELL & ENVIRONMENT 2021; 44:2951-2965. [PMID: 34008219 DOI: 10.1111/pce.14101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 05/02/2021] [Indexed: 05/26/2023]
Abstract
Maintaining Na+ /K+ homeostasis is a critical feature for plant survival under salt stress, which depends on the operation of Na+ and K+ transporters. Although some K+ transporters mediating root K+ uptake have been reported to be essential to the maintenance of Na+ /K+ homeostasis, the effect of K+ long-distance translocation via phloem on plant salt tolerance remains unclear. Here, we provide physiological and genetic evidence of the involvement of phloem-localized OsAKT2 in rice salt tolerance. OsAKT2 is a K+ channel permeable to K+ but not to Na+ . Under salt stress, a T-DNA knock-out mutant, osakt2 and two CRISPR lines showed a more sensitive phenotype and higher Na+ accumulation than wild type. They also contained more K+ in shoots but less K+ in roots, showing higher Na+ /K+ ratios. Disruption of OsAKT2 decreases K+ concentration in phloem sap and inhibits shoot-to-root redistribution of K+ . In addition, OsAKT2 also regulates the translocation of K+ and sucrose from old leaves to young leaves, and affects grain shape and yield. These results indicate that OsAKT2-mediated K+ redistribution from shoots to roots contributes to maintenance of Na+ /K+ homeostasis and inhibition of root Na+ uptake, providing novel insights into the roles of K+ transporters in plant salt tolerance.
Collapse
Affiliation(s)
- Quanxiang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Junxia Luan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhenzhen Zhou
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongshu Guo
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yue Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Deepika D, Singh A. Plant phospholipase D: novel structure, regulatory mechanism, and multifaceted functions with biotechnological application. Crit Rev Biotechnol 2021; 42:106-124. [PMID: 34167393 DOI: 10.1080/07388551.2021.1924113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phospholipases D (PLDs) are important membrane lipid-modifying enzymes in eukaryotes. Phosphatidic acid, the product of PLD activity, is a vital signaling molecule. PLD-mediated lipid signaling has been the subject of extensive research leading to discovery of its crystal structure. PLDs are involved in the pathophysiology of several human diseases, therefore, viewed as promising targets for drug design. The availability of a eukaryotic PLD crystal structure will encourage PLD targeted drug designing. PLDs have been implicated in plants response to biotic and abiotic stresses. However, the molecular mechanism of response is not clear. Recently, several novel findings have shown that PLD mediated modulation of structural and developmental processes, such as: stomata movement, root growth and microtubule organization are crucial for plants adaptation to environmental stresses. Involvement of PLDs in regulating membrane remodeling, auxin mediated alteration of root system architecture and nutrient uptake to combat nitrogen and phosphorus deficiencies and magnesium toxicity is established. PLDs via vesicle trafficking modulate cytoskeleton and exocytosis to regulate self-incompatibility (SI) signaling in flowering plants, thereby contributes to plants hybrid vigor and diversity. In addition, the important role of PLDs has been recognized in biotechnologically important functions, including oil/TAG synthesis and maintenance of seed quality. In this review, we describe the crystal structure of a plant PLD and discuss the molecular mechanism of catalysis and activity regulation. Further, the role of PLDs in regulating plant development under biotic and abiotic stresses, nitrogen and phosphorus deficiency, magnesium ion toxicity, SI signaling and pollen tube growth and in important biotechnological applications has been discussed.
Collapse
Affiliation(s)
- Deepika Deepika
- National Institute of Plant Genome Research, New Delhi, India
| | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
22
|
Wang Y, Dai X, Xu G, Dai Z, Chen P, Zhang T, Zhang H. The Ca 2+-CaM Signaling Pathway Mediates Potassium Uptake by Regulating Reactive Oxygen Species Homeostasis in Tobacco Roots Under Low-K + Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:658609. [PMID: 34163499 PMCID: PMC8216240 DOI: 10.3389/fpls.2021.658609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 05/31/2023]
Abstract
Potassium (K+) deficiency severely threatens crop growth and productivity. Calcium (Ca2+) signaling and its sensors play a central role in the response to low-K+ stress. Calmodulin (CaM) is an important Ca2+ sensor. However, the mechanism by which Ca2+ signaling and CaM mediate the response of roots to low-K+ stress remains unclear. In this study, we found that the K+ concentration significantly decreased in both shoots and roots treated with Ca2+ channel blockers, a Ca2+ chelator, and CaM antagonists. Under low-K+ stress, reactive oxygen species (ROS) accumulated, and the activity of antioxidant enzymes, NAD kinase (NADK), and NADP phosphatase (NADPase) decreased. This indicates that antioxidant enzymes, NADK, and NADPase might be downstream target proteins in the Ca2+-CaM signaling pathway, which facilitates K+ uptake in plant roots by mediating ROS homeostasis under low-K+ stress. Moreover, the expression of NtCNGC3, NtCNGC10, K+ channel genes, and transporter genes was significantly downregulated in blocker-treated, chelator-treated, and antagonist-treated plant roots in the low K+ treatment, suggesting that the Ca2+-CaM signaling pathway may mediate K+ uptake by regulating the expression of these genes. Overall, this study shows that the Ca2+-CaM signaling pathway promotes K+ absorption by regulating ROS homeostasis and the expression of K+ uptake-related genes in plant roots under low-K+ stress.
Collapse
|
23
|
Liu H, Xue S. Interplay between hydrogen sulfide and other signaling molecules in the regulation of guard cell signaling and abiotic/biotic stress response. PLANT COMMUNICATIONS 2021; 2:100179. [PMID: 34027393 PMCID: PMC8132131 DOI: 10.1016/j.xplc.2021.100179] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Stomatal aperture controls the balance between transpirational water loss and photosynthetic carbon dioxide (CO2) uptake. Stomata are surrounded by pairs of guard cells that sense and transduce environmental or stress signals to induce diverse endogenous responses for adaptation to environmental changes. In a recent decade, hydrogen sulfide (H2S) has been recognized as a signaling molecule that regulates stomatal movement. In this review, we summarize recent progress in research on the regulatory role of H2S in stomatal movement, including the dynamic regulation of phytohormones, ion homeostasis, and cell structural components. We focus especially on the cross talk among H2S, nitric oxide (NO), and hydrogen peroxide (H2O2) in guard cells, as well as on H2S-mediated post-translational protein modification (cysteine thiol persulfidation). Finally, we summarize the mechanisms by which H2S interacts with other signaling molecules in plants under abiotic or biotic stress. Based on evidence and clues from existing research, we propose some issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Zhang G, Yang J, Chen X, Zhao D, Zhou X, Zhang Y, Wang X, Zhao J. Phospholipase D- and phosphatidic acid-mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (Glycine max). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:142-158. [PMID: 33377234 DOI: 10.1111/tpj.15152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Symbiotic rhizobium-legume interactions, such as root hair curling, rhizobial invasion, infection thread expansion, cell division and proliferation of nitrogen-fixing bacteroids, and nodule formation, involve extensive membrane synthesis, lipid remodeling and cytoskeleton dynamics. However, little is known about these membrane-cytoskeleton interfaces and related genes. Here, we report the roles of a major root phospholipase D (PLD), PLDα1, and its enzymatic product, phosphatidic acid (PA), in rhizobium-root interaction and nodulation. PLDα1 was activated and the PA content transiently increased in roots after rhizobial infection. Levels of PLDα1 transcript and PA, as well as actin and tubulin cytoskeleton-related gene expression, changed markedly during root-rhizobium interactions and nodule development. Pre-treatment of the roots of soybean seedlings with n-butanol suppressed the generation of PLD-derived PA, the expression of early nodulation genes and nodule numbers. Overexpression or knockdown of GmPLDα1 resulted in changes in PA levels, glycerolipid profiles, nodule numbers, actin cytoskeleton dynamics, early nodulation gene expression and hormone levels upon rhizobial infection compared with GUS roots. The transcript levels of cytoskeleton-related genes, such as GmACTIN, GmTUBULIN, actin capping protein 1 (GmCP1) and microtubule-associating protein (GmMAP1), were modified in GmPLDα1-altered hairy roots compared with those of GUS roots. Phosphatidic acid physically bound to GmCP1 and GmMAP1, which could be related to cytoskeletal changes in rhizobium-infected GmPLDα1 mutant roots. These data suggest that PLDα1 and PA play important roles in soybean-rhizobium interaction and nodulation. The possible underlying mechanisms, including PLDα1- and PA-mediated lipid signaling, membrane remodeling, cytoskeleton dynamics and related hormone signaling, are discussed herein.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangli Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dandan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St Louis, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
25
|
Dreyer I, Sussmilch FC, Fukushima K, Riadi G, Becker D, Schultz J, Hedrich R. How to Grow a Tree: Plant Voltage-Dependent Cation Channels in the Spotlight of Evolution. TRENDS IN PLANT SCIENCE 2021; 26:41-52. [PMID: 32868178 DOI: 10.1016/j.tplants.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Phylogenetic analysis can be a powerful tool for generating hypotheses regarding the evolution of physiological processes. Here, we provide an updated view of the evolution of the main cation channels in plant electrical signalling: the Shaker family of voltage-gated potassium channels and the two-pore cation (K+) channel (TPC1) family. Strikingly, the TPC1 family followed the same conservative evolutionary path as one particular subfamily of Shaker channels (Kout) and remained highly invariant after terrestrialisation, suggesting that electrical signalling was, and remains, key to survival on land. We note that phylogenetic analyses can have pitfalls, which may lead to erroneous conclusions. To avoid these in the future, we suggest guidelines for analyses of ion channel evolution in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Frances C Sussmilch
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany; School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Gonzalo Riadi
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Jörg Schultz
- Department of Bioinformatics, Biozentrum, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany.
| |
Collapse
|
26
|
Kocourková D, Krčková Z, Pejchar P, Kroumanová K, Podmanická T, Daněk M, Martinec J. Phospholipase Dα1 mediates the high-Mg 2+ stress response partially through regulation of K + homeostasis. PLANT, CELL & ENVIRONMENT 2020; 43:2460-2475. [PMID: 32583878 DOI: 10.1111/pce.13831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 05/28/2023]
Abstract
Intracellular levels of Mg2+ are tightly regulated, as Mg2+ deficiency or excess affects normal plant growth and development. In Arabidopsis, we determined that phospholipase Dα1 (PLDα1) is involved in the stress response to high-magnesium conditions. The T-DNA insertion mutant pldα1 is hypersensitive to increased concentrations of magnesium, exhibiting reduced primary root length and fresh weight. PLDα1 activity increases rapidly after high-Mg2+ treatment, and this increase was found to be dose dependent. Two lines harbouring mutations in the HKD motif, which is essential for PLDα1 activity, displayed the same high-Mg2+ hypersensitivity of pldα1 plants. Moreover, we show that high concentrations of Mg2+ disrupt K+ homeostasis, and that transcription of K+ homeostasis-related genes CIPK9 and HAK5 is impaired in pldα1. Additionally, we found that the akt1, hak5 double mutant is hypersensitive to high-Mg2+ . We conclude that in Arabidopsis, the enzyme activity of PLDα1 is vital in the response to high-Mg2+ conditions, and that PLDα1 mediates this response partially through regulation of K+ homeostasis.
Collapse
Affiliation(s)
- Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Krčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Podmanická
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
27
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
28
|
Shen L, Yang L, Zhang W. Multiple basic amino acid residues contribute to phosphatidic acid-mediated inhibition of rice potassium channel OsAKT2. PLANT SIGNALING & BEHAVIOR 2020; 15:1789818. [PMID: 32649276 PMCID: PMC8550199 DOI: 10.1080/15592324.2020.1789818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Anionic phospholipid phosphatidic acid (PA) behaves as an important second messenger involved in many cellular processes, such as development, cytoskeletal dynamics, vesicle trafficking, and stress response. Recently, it was reported that PA can directly bind with the rice Shaker K+ channel OsAKT2 to inhibit its channel activity. Two adjacent arginine residues (R644 and R645) in ANK domain were identified as a PA-binding site essential to the PA-mediated inhibition of OsAKT2. However, there may be still other PA-binding sites unidentified in OsAKT2. Here, using a PA biosensor (PAleon), we found that the exogenous PA treatment significantly increased the PA level at the plasma membrane of Xenopus oocytes which were used to express OsAKT2 for electrophysiological assays. As reported previously, exogenous PA markedly inhibited OsAKT2 K+ currents. Replacement of two adjacent basic residues (R190 and K191) in the S4 voltage sensor by glycine completely abolished the time-dependent K+ currents of OsAKT2, but this variant was insensitive to PA treatment. In addition, we also identified other two adjacent arginines (R755 and R756) located in the cytosolic domain as a PA-binding site, which were also essential to the PA-mediated inhibition of OsAKT2. These results provide a more comprehensive understanding of the PA-K+ channel interaction mechanism. Combining the findings here with the previous study, we propose that multiple basic residues (R190/K191, R644/R645, and R755/R756) in different domains of OsAKT2 contribute to PA-mediated regulation of OsAKT2.
Collapse
Affiliation(s)
- Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lele Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Phosphatidic acid: an emerging versatile class of cellular mediators. Essays Biochem 2020; 64:533-546. [DOI: 10.1042/ebc20190089] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Abstract
Lipids function not only as the major structural components of cell membranes, but also as molecular messengers that transduce signals to trigger downstream signaling events in the cell. Phosphatidic acid (PA), the simplest and a minor class of glycerophospholipids, is a key intermediate for the synthesis of membrane and storage lipids, and also plays important roles in mediating diverse cellular and physiological processes in eukaryotes ranging from microbes to mammals and higher plants. PA comprises different molecular species that can act differently, and is found in virtually all organisms, tissues, and organellar membranes, with variations in total content and molecular species composition. The cellular levels of PA are highly dynamic in response to stimuli and multiple enzymatic reactions can mediate its production and degradation. Moreover, its unique physicochemical properties compared with other glycerophospholipids allow PA to influence membrane structure and dynamics, and interact with various proteins. PA has emerged as a class of new lipid mediators modulating various signaling and cellular processes via its versatile effects, such as membrane tethering, conformational changes, and enzymatic activities of target proteins, and vesicular trafficking.
Collapse
|
30
|
Maron L. Phospholipids: novel players in the complex regulation of potassium channels in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:647-648. [PMID: 32436315 DOI: 10.1111/tpj.14790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|