1
|
Verhoeven A, Finkers-Tomczak A, Prins P, Valkenburg-van Raaij DR, van Schaik CC, Overmars H, van Steenbrugge JJM, Tacken W, Varossieau K, Slootweg EJ, Kappers IF, Quentin M, Goverse A, Sterken MG, Smant G. The root-knot nematode effector MiMSP32 targets host 12-oxophytodienoate reductase 2 to regulate plant susceptibility. THE NEW PHYTOLOGIST 2023; 237:2360-2374. [PMID: 36457296 DOI: 10.1111/nph.18653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
To establish persistent infections in host plants, herbivorous invaders, such as root-knot nematodes, must rely on effectors for suppressing damage-induced jasmonate-dependent host defenses. However, at present, the effector mechanisms targeting the biosynthesis of biologically active jasmonates to avoid adverse host responses are unknown. Using yeast two-hybrid, in planta co-immunoprecipitation, and mutant analyses, we identified 12-oxophytodienoate reductase 2 (OPR2) as an important host target of the stylet-secreted effector MiMSP32 of the root-knot nematode Meloidogyne incognita. MiMSP32 has no informative sequence similarities with other functionally annotated genes but was selected for the discovery of novel effector mechanisms based on evidence of positive, diversifying selection. OPR2 catalyzes the conversion of a derivative of 12-oxophytodienoate to jasmonic acid (JA) and operates parallel to 12-oxophytodienoate reductase 3 (OPR3), which controls the main pathway in the biosynthesis of jasmonates. We show that MiMSP32 targets OPR2 to promote parasitism of M. incognita in host plants independent of OPR3-mediated JA biosynthesis. Artificially manipulating the conversion of the 12-oxophytodienoate by OPRs increases susceptibility to multiple unrelated plant invaders. Our study is the first to shed light on a novel effector mechanism targeting this process to regulate the susceptibility of host plants.
Collapse
Affiliation(s)
- Ava Verhoeven
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
- Plant-Environment Signaling, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Anna Finkers-Tomczak
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Pjotr Prins
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Debbie R Valkenburg-van Raaij
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Casper C van Schaik
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Hein Overmars
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Joris J M van Steenbrugge
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Wannes Tacken
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Koen Varossieau
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Erik J Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
2
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
3
|
Goverse A, Mitchum MG. At the molecular plant-nematode interface: New players and emerging paradigms. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102225. [PMID: 35537283 DOI: 10.1016/j.pbi.2022.102225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Plant-parasitic nematodes (PPNs) secrete an array of molecules that can lead to their detection by or promote infection of their hosts. However, the function of these molecules in plant cells is often unknown or limited to phenotypic observations. Similarly, how plant cells detect and/or respond to these molecules is still poorly understood. Here, we highlight recent advances in mechanistic insights into the molecular dialogue between PPNs and plants at the cellular level. New discoveries reveal a) the essential roles of extra- and intracellular plant receptors in PPN perception and the manipulation of host immune- or developmental pathways during infection and b) how PPNs target such receptors to manipulate their hosts. Finally, the plant secretory pathway has emerged as a critical player in PPN peptide delivery, feeding site formation and non-canonical resistance.
Collapse
Affiliation(s)
- Aska Goverse
- Laboratory of Nematology, Dept of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands.
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
4
|
Dodueva I, Lebedeva M, Lutova L. Dialog between Kingdoms: Enemies, Allies and Peptide Phytohormones. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112243. [PMID: 34834606 PMCID: PMC8618561 DOI: 10.3390/plants10112243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/14/2023]
Abstract
Various plant hormones can integrate developmental and environmental responses, acting in a complex network, which allows plants to adjust their developmental processes to changing environments. In particular, plant peptide hormones regulate various aspects of plant growth and development as well as the response to environmental stress and the interaction of plants with their pathogens and symbionts. Various plant-interacting organisms, e.g., bacterial and fungal pathogens, plant-parasitic nematodes, as well as symbiotic and plant-beneficial bacteria and fungi, are able to manipulate phytohormonal level and/or signaling in the host plant in order to overcome plant immunity and to create the habitat and food source inside the plant body. The most striking example of such phytohormonal mimicry is the ability of certain plant pathogens and symbionts to produce peptide phytohormones of different classes. To date, in the genomes of plant-interacting bacteria, fungi, and nematodes, the genes encoding effectors which mimic seven classes of peptide phytohormones have been found. For some of these effectors, the interaction with plant receptors for peptide hormones and the effect on plant development and defense have been demonstrated. In this review, we focus on the currently described classes of peptide phytohormones found among the representatives of other kingdoms, as well as mechanisms of their action and possible evolutional origin.
Collapse
|
5
|
Price JA, Coyne D, Blok VC, Jones JT. Potato cyst nematodes Globodera rostochiensis and G. pallida. MOLECULAR PLANT PATHOLOGY 2021; 22:495-507. [PMID: 33709540 PMCID: PMC8035638 DOI: 10.1111/mpp.13047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 05/12/2023]
Abstract
TAXONOMY Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES Genomic information for PCN is accessible through WormBase ParaSite.
Collapse
Affiliation(s)
- James A. Price
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| | - Vivian C. Blok
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - John T. Jones
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
6
|
Eves-van den Akker S, Stojilković B, Gheysen G. Recent applications of biotechnological approaches to elucidate the biology of plant-nematode interactions. Curr Opin Biotechnol 2021; 70:122-130. [PMID: 33932862 DOI: 10.1016/j.copbio.2021.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022]
Abstract
Plant-parasitic nematodes are a major threat to food security. The most economically important species have remarkable abilities to manipulate host physiology and immunity. This review highlights recent applications of biotechnological approaches to elucidate the underlying biology on both sides of the interaction. Their obligate biotrophic nature has hindered the development of simple nematode transformation protocols. Instead, transient or stable expression of the effector (native or tagged) in planta has been instrumental in elucidating the biology of plant-nematode interactions. Recent progress in the development of functional genetics tools 'in nematoda' promises further advances. Finally, we discuss how effector research has uncovered novel protein translocation routes in plant cells and may reveal additional unknown biological processes in the future.
Collapse
Affiliation(s)
| | - Boris Stojilković
- Department of Biotechnology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Godelieve Gheysen
- Department of Biotechnology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
7
|
Rhodes J, Yang H, Moussu S, Boutrot F, Santiago J, Zipfel C. Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. Nat Commun 2021; 12:705. [PMID: 33514716 PMCID: PMC7846792 DOI: 10.1038/s41467-021-20932-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 01/23/2023] Open
Abstract
Plant genomes encode hundreds of receptor kinases and peptides, but the number of known plant receptor-ligand pairs is limited. We report that the Arabidopsis leucine-rich repeat receptor kinase LRR-RK MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2) is the receptor for the SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) phytocytokines. MIK2 is necessary and sufficient for immune responses triggered by multiple SCOOP peptides, suggesting that MIK2 is the receptor for this divergent family of peptides. Accordingly, the SCOOP12 peptide directly binds MIK2 and triggers complex formation between MIK2 and the BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) co-receptor. MIK2 is required for resistance to the important root pathogen Fusarium oxysporum. Notably, we reveal that Fusarium proteomes encode SCOOP-like sequences, and corresponding synthetic peptides induce MIK2-dependent immune responses. These results suggest that MIK2 may recognise Fusarium-derived SCOOP-like sequences to induce immunity against Fusarium. The definition of SCOOPs as MIK2 ligands will help to unravel the multiple roles played by MIK2 during plant growth, development and stress responses.
Collapse
Affiliation(s)
- Jack Rhodes
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Huanjie Yang
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Steven Moussu
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Freddy Boutrot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Anova-Plus, Évry, Évry-Courcouronnes, France
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|