1
|
Yu Z, Qi Y, Wei Y, Zhuang G, Li Y, Wang B, Akbar S, Xu Y, Hua X, Xu Q, Deng Z, Zhang J, Huang Y, Yu F, Zhou J. A cost-effective oligo-based barcode system for chromosome identification in longan and lychee. HORTICULTURE RESEARCH 2025; 12:uhae278. [PMID: 39845644 PMCID: PMC11750958 DOI: 10.1093/hr/uhae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/21/2024] [Indexed: 01/24/2025]
Abstract
Oligonucleotide (Oligo)-based fluorescence in situ hybridization (FISH) represents a highly effective methodology for identifying plant chromosomes. Longan is a commercially significant fruit species, yet lacking basic chromosomal markers has hindered its cytogenetic research. In this study, we developed a cost-effective oligo-based system for distinguishing chromosomes of longan (Dimocarpus longan Lour., 2n = 2x = 30). For this system, each synthesized oligo contained two chromosome-specific sequences that spanned a distance of over 200 kb, and a PCR-based flexible amplification method coupled with nested primers was used for probe labeling. The use of these oligo-based barcodes enabled the marking of 36 chromosomal regions, which allowed for the unambiguous distinction of all 15 chromosomes in both longan and lychee (Litchi chinensis Sonn., 2n = 2x = 30) species. Based on the identification of individual chromosomes, we constructed karyotypes and detected genome assembly errors involving the 35S ribosomal RNA gene (35S rDNA) in longan and lychee. Developing oligo-based barcodes offers considerable promise for advancing cytogenetic research in longan, lychee, and their related species. Furthermore, this cost-effective synthesis system can be referred to the development of new oligo libraries among other species.
Collapse
Affiliation(s)
- Zehuai Yu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yiying Qi
- College of Agriculture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yuxuan Wei
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Gui Zhuang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yihan Li
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Baiyu Wang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Sehrish Akbar
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yi Xu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Xiuting Hua
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Qiutao Xu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Zuhu Deng
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Jisen Zhang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yongji Huang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Minhou District, Fuzhou 350108, China
| | - Fan Yu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Mazhang District, Zhanjiang 524091, China
| |
Collapse
|
2
|
Song Y, Shen M, Cao F, Yang X. Compare Analysis of Codon Usage Bias of Nuclear Genome in Eight Sapindaceae Species. Int J Mol Sci 2024; 26:39. [PMID: 39795897 PMCID: PMC11720230 DOI: 10.3390/ijms26010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Codon usage bias (CUB) refers to the different frequencies with which various codons are utilized within a genome. Examining CUB is essential for understanding genome structure, function, and evolution. However, little was known about codon usage patterns and the factors influencing the nuclear genomes of eight ecologically significant Sapindaceae species widely utilized for food and medicine. In this study, an analysis of nucleotide composition revealed a higher A/T content and showed a preference for A/T at the third codon position in the eight species of Sapindaceae. A correspondence analysis of relative synonymous codon usage explained only part of the variation, suggesting that not only natural selection but also various other factors contribute to selective constraints on codon bias in the nuclear genomes of the eight Sapindaceae species. Additionally, ENC-GC3 plot, PR2-Bias, and neutrality plot analyses indicated that natural selection exerted a greater influence than mutation pressure across these eight species. Among the eight Sapindaceae species, 16 to 26 optimal codons were identified, with two common high-frequency codons: AGA (encoding Arg) and GCU (encoding Ala). The clustering heat map, which included the 8 Sapindaceae species and 13 other species, revealed two distinct clusters corresponding to monocots and dicots. This finding suggested that CUB analysis was particularly effective in elucidating evolutionary relationships at the family level. Collectively, our results emphasized the distinct codon usage characteristics and unique evolutionary traits of the eight Sapindaceae species.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Li J, Chen C, Zeng Z, Wu F, Feng J, Liu B, Mai Y, Chu X, Wei W, Li X, Liang Y, Liu Y, Xu J, Xia R. SapBase: A central portal for functional and comparative genomics of Sapindaceae species. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1561-1570. [PMID: 38804840 DOI: 10.1111/jipb.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
The Sapindaceae family, encompassing a wide range of plant forms such as herbs, vines, shrubs, and trees, is widely distributed across tropical and subtropical regions. This family includes economically important crops like litchi, longan, rambutan, and ackee. With the wide application of genomic technologies in recent years, several Sapindaceae plant genomes have been decoded, leading to an accumulation of substantial omics data in this field. This surge in data highlights the pressing need for a unified genomic data center capable of storing, sharing, and analyzing these data. Here, we introduced SapBase, that is, the Sapindaceae Genome Database. SapBase houses seven published plant genomes alongside their corresponding gene structure and functional annotations, small RNA annotations, gene expression profiles, gene pathways, and synteny block information. It offers user-friendly features for gene information mining, co-expression analysis, and inter-species comparative genomic analysis. Furthermore, we showcased SapBase's extensive capacities through a detailed bioinformatic analysis of a MYB gene in litchi. Thus, SapBase could serve as an integrative genomic resource and analysis platform for the scientific exploration of Sapinaceae species and their comparative studies with other plants.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Fengqi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Junting Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Bo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Yingxiao Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Xinyi Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
| | - Wanchun Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Xin Li
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Yanyang Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - YuanLong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Jing Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China at the Ministry of Agriculture and Rural Affairs, South China Agricultural University, College of Horticulture, Guangzhou, 510640, China
| |
Collapse
|
4
|
Sidharthan VK, Reddy V, Kiran G, Rajeswari V, Baranwal VK, Kumar MK, Kumar KS. Probing of plant transcriptomes reveals the hidden genetic diversity of the family Secoviridae. Arch Virol 2024; 169:150. [PMID: 38898334 DOI: 10.1007/s00705-024-06076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Secoviruses are single-stranded RNA viruses that infect plants. In the present study, we identified 61 putative novel secoviral genomes in various plant species by mining publicly available plant transcriptome data. These viral sequences represent the genomes of 13 monopartite and 48 bipartite secovirids. The genome sequences of 52 secovirids were coding-complete, and nine were partial. Except for small open reading frames (ORFs) determined in waikaviral genomes and RNA2 of torradoviruses, all of the recovered genomes/genome segments contained a large ORF encoding a polyprotein. Based on genome organization and phylogeny, all but three of the novel secoviruses were assigned to different genera. The genome organization of two identified waika-like viruses resembled that of the recently identified waika-like virus Triticum aestivum secovirus. Phylogenetic analysis revealed a pattern of host-virus co-evolution in a few waika- and waika-like viruses and increased phylogenetic diversity of nepoviruses. The study provides a basis for further investigation of the biological properties of these novel secoviruses.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India.
| | - Vijayprakash Reddy
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - G Kiran
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - V Rajeswari
- School of Agricultural Sciences, Malla Reddy University, Hyderabad, India
| | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M Kiran Kumar
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - K Sudheer Kumar
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| |
Collapse
|
5
|
Lu X, Chen Z, Liao B, Han G, Shi D, Li Q, Ma Q, Zhu L, Zhu Z, Luo X, Fu S, Ren J. The chromosome-scale genome provides insights into pigmentation in Acer rubrum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:322-333. [PMID: 35932656 DOI: 10.1016/j.plaphy.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Acer rubrum L. is one of the most prevalent ornamental species of the genus Acer, due to its straight and tall stems and beautiful leaf colors. For this study, the Oxford Nanopore platform and Hi-C technology were employed to obtain a chromosome-scale genome for A. rubrum. The genome size of A. rubrum was 1.69 Gb with an N50 of 549.44 Kb, and a total of 39 pseudochromosomes were generated with a 99.61% genome. The A. rubrum genome was predicted to have 64644 genes, of which 97.34% were functionally annotated. Genome annotation identified 67.14% as the transposable element (TE) repeat sequence, with long terminal repeats (LTR) being the richest (55.68%). Genome evolution analysis indicated that A. rubrum diverged from A. yangbiense ∼6.34 million years ago. We identified 13 genes related to pigment synthesis in A. rubrum leaves, where the expressions of four ArF3'H genes were consistent with the synthesis of cyanidin (a key pigment) in red leaves. Correlation analysis verified that the pigmentation of A. rubrum leaves was under the coordinated regulation of non-structural carbohydrates and hormones. The genomic sequence of A. rubrum will facilitate genomic breeding research for this species, while providing the valuable utilization of Aceraceae resources.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Cultural & Creative College, Anhui Finance & Trade Vocational College, Hefei, 230601, China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Buyan Liao
- Cultural & Creative College, Anhui Finance & Trade Vocational College, Hefei, 230601, China
| | - Guomin Han
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Dan Shi
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiyong Zhu
- Ningbo City College of Vocational Technology, Ningbo, 315502, China
| | - Xumei Luo
- Anhui Academy of Forestry, Hefei, 230031, China
| | - Songling Fu
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
6
|
Zheng J, Meinhardt LW, Goenaga R, Matsumoto T, Zhang D, Yin Y. The chromosome-level rambutan genome reveals a significant role of segmental duplication in the expansion of resistance genes. HORTICULTURE RESEARCH 2022; 9:uhac014. [PMID: 35147197 PMCID: PMC9002659 DOI: 10.1093/hr/uhac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Lyndel W Meinhardt
- USDA-ARS, Sustainable Perennial Crops Laboratory, Beltsville, MD 20705, USA
| | - Ricardo Goenaga
- USDA-ARS, Tropical Agriculture Research Station, Mayaguez, PR 00680
| | - Tracie Matsumoto
- USDA-ARS, Daniel K. Inouye Pacific Basin Agricultural Research Center, Hilo, 96720, HI, USA
| | - Dapeng Zhang
- USDA-ARS, Sustainable Perennial Crops Laboratory, Beltsville, MD 20705, USA
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
7
|
Wei D, Yang J, Xiang Y, Meng L, Pan Y, Zhang Z. Attenuation of Postharvest Browning in Rambutan Fruit by Melatonin Is Associated With Inhibition of Phenolics Oxidation and Reinforcement of Antioxidative Process. Front Nutr 2022; 9:905006. [PMID: 35795584 PMCID: PMC9251426 DOI: 10.3389/fnut.2022.905006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Rambutan is a famous tropical fruit with a unique flavor and considerable economic value. However, the high vulnerability to postharvest browning leads to a short shelf life of rambutan fruit. Melatonin (MT) is an excellent bioactive molecule that possesses the potential to improve the storability of the harvested crops. In this study, the physiological mechanism of exogenous MT in affecting pericarp browning and senescence of postharvest rambutan fruit was investigated. Experimental results showed that the application of MT at 0.125 mmol L-1 appreciably retarded the advancement of pericarp browning and color parameters (L*, a*, and b*). MT treatment inhibited the increase in membrane relative electrolytes leakage (REL) while lowering the accumulation of reactive oxygen species (ROS) (■O2 - and H2O2) and malonaldehyde (MDA). Reduced phenolics oxidation, as indicated by higher contents of total phenolics, flavonoids, and anthocyanins along with fewer activities of peroxidase (POD) and polyphenol oxidase (PPO), was detected in MT fruit compared with control fruit. MT treatment maintained the cellular redox state by inducing antioxidant enzyme activity and reinforcing the ascorbate-glutathione (AsA-GSH) cycle. Furthermore, the ultrastructural observation revealed that the spoilage of cellular and subcellular structures was milder in MT fruit than that in control fruit. The results suggest that MT could ameliorate the browning and senescence of rambutan fruit by inhibiting phenolic oxidation and enhancing the antioxidative process.
Collapse
Affiliation(s)
- Dongling Wei
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Jiali Yang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yue Xiang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yonggui Pan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- *Correspondence: Zhengke Zhang,
| |
Collapse
|