1
|
Iliev I, Tsoneva I, Nesheva A, Staneva G, Robev B, Momchilova A, Nikolova B. Complementary Treatment of Breast Cancer Cells with Different Metastatic Potential with Iscador Qu in the Presence of Clinically Approved Anticancer Drugs. Curr Issues Mol Biol 2024; 46:12457-12480. [PMID: 39590334 PMCID: PMC11593002 DOI: 10.3390/cimb46110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
European mistletoe extract (Iscador Qu) has been studied for decades, but it has not ceased to arouse scientific interest. The purpose was to investigate the impact of Iscador Qu on the antiproliferative potential of 11 standard chemotherapeutic agents on two breast cancer cell lines: MCF-7 low-metastatic and MDA-MB-231 high-metastatic and control cell lines (MCF-10A). MTT-dye reduction assay, FACS analysis, and PI staining were utilized. The most promising combinations acting against the MDA-MB-231 cell line were observed upon the simultaneous application of Iscador Qu (80 µg/mL) and Docetaxel, with 4-fold reduction in IC50. An antagonistic effect was found under treatment with Cisplatin and Iscador Qu (1.5-fold increase in IC50). The response of the low-metastatic breast cancer cell line MCF-7 to the tested combinations was different compared to the high-metastatic one. The most pronounced cytotoxic effect was found for the combination of Oxaliplatin and Iscador Qu (20 µg/mL) (5.2-fold IC50 reduction). An antagonistic effect for MCF-7 line was also observed when combinations with Olaparib and Tamoxifen were applied. This in vitro study offers new combinations between Iscador Qu and standard chemotherapeutic agents that hold great promise in establishing breast cancer therapeutic protocols compared to traditional monotherapies.
Collapse
Affiliation(s)
- Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria;
| | - Iana Tsoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Aleksandrina Nesheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Bozhil Robev
- Department of Medical Oncology, University Hospital “Sv. Ivan Rilski”, 15 Acad. Ivan Geshov Blvd, 1431 Sofia, Bulgaria;
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| |
Collapse
|
2
|
Aydın ÇM, Çelikbıçak Ö, Hayaloğlu AA. Evaluation of antioxidant, antimicrobial, and bioactive properties and peptide sequence composition of Malatya apricot kernels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8022-8036. [PMID: 38837418 DOI: 10.1002/jsfa.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND This study used four different apricot (Prunus armeniaca) kernels cultivated in Malatya during two consecutive years. The varieties were Hacihaliloglu, Hasanbey, Kabaasi, and Zerdali. The physicochemical properties of the kernels were determined, and the bioactive content of the kernels was evaluated using kernel hydrolysates prepared using trypsin. RESULTS With regard to the physicochemical properties of the kernels, the dry matter ratio and protein content were the highest in the Hacihaliloglu variety; the ash ratio was the highest in the Kabaasi variety, and the free oil ratio was the highest in the Hasanbey variety. The bioactive compound content changed according to kernel variety. Angiotensin-converting enzyme inhibitors activity was found to be the highest in the Hacihaliloglu and Hasanbey varieties, which had the lowest amygdalin content, and Zerdali had the highest amygdalin content. The antioxidant and antimicrobial effects of the kernels varied, with Hasanbey and Kabaasi generally having the highest content in both analyses. Moreover, a concentration of 20 mg mL-1 of the hydrolysate was determined to have a destructive effect for the microorganisms used in this study. The storage protein of the kernels, except Hacihaliloglu, was found to be Prunin 1, with the longest matching protein chain in the kernels being R.QQQGGQLMANGLEETFCSLRLK.E. CONCLUSION The results suggest that the peptide sequences identified in the kernels could have antihypertensive, antioxidative, and Dipeptidyl peptidase IV (DPP-IV) inhibitory effects. Consequently, apricot kernels show potential for use in the production of functional food products. Of the kernels evaluated in this study, Hacihaliloglu and Hasanbey were deemed the most suitable varieties due to their higher bioactive content and lower amygdalin content. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Çağlar Mert Aydın
- Food Processing Technology, Vocational High School, Munzur University, Tunceli, Türkiye
| | - Ömür Çelikbıçak
- Chemistry Department, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | - Ali Adnan Hayaloğlu
- Food Engineering Department, Faculty of Engineering, Inonu University, Malatya, Türkiye
| |
Collapse
|
3
|
Nicoletti M. The Antioxidant Activity of Mistletoes ( Viscum album and Other Species). PLANTS (BASEL, SWITZERLAND) 2023; 12:2707. [PMID: 37514321 PMCID: PMC10384781 DOI: 10.3390/plants12142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In addition to the European mistletoe, Viscum album, which is the most known and utilized one, there are several species commonly known as mistletoe. They are spread in various regions of the planet and are all characterized by hemiparasitism and epiphytic behaviour. The published studies evidence other similarities, including the sharing of important biological properties, with the common presence of antioxidant effects. However, whereas the European mistletoe is largely utilized in medical treatments, although with controversial aspects, the scientific knowledge and medical uses of other mistletoes are still insufficient. This review focuses on the controversial medical story of European mistletoe regarding its antioxidant activity and the potentiality of the other species named mistletoe pertaining to botanical families and genera different from Viscum.
Collapse
Affiliation(s)
- Marcello Nicoletti
- Department of Environmental Biology, Foundation in Unam Sapientiam, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Schröder L, Rupp O, Senkler M, Rugen N, Hohnjec N, Goesmann A, Küster H, Braun HP. The Viscum album Gene Space database. FRONTIERS IN PLANT SCIENCE 2023; 14:1193122. [PMID: 37484460 PMCID: PMC10359728 DOI: 10.3389/fpls.2023.1193122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023]
Abstract
The hemiparasitic flowering plant Viscum album (European mistletoe) is known for its very special life cycle, extraordinary biochemical properties, and extremely large genome. The size of its genome is estimated to be 30 times larger than the human genome and 600 times larger than the genome of the model plant Arabidopsis thaliana. To achieve insights into the Gene Space of the genome, which is defined as the space including and surrounding protein-coding regions, a transcriptome project based on PacBio sequencing has recently been conducted. A database resulting from this project contains sequences of 39,092 different open reading frames encoding 32,064 distinct proteins. Based on 'Benchmarking Universal Single-Copy Orthologs' (BUSCO) analysis, the completeness of the database was estimated to be in the range of 78%. To further develop this database, we performed a transcriptome project of V. album organs harvested in summer and winter based on Illumina sequencing. Data from both sequencing strategies were combined. The new V. album Gene Space database II (VaGs II) contains 90,039 sequences and has a completeness of 93% as revealed by BUSCO analysis. Sequences from other organisms, particularly fungi, which are known to colonize mistletoe leaves, have been removed. To evaluate the quality of the new database, proteome data of a mitochondrial fraction of V. album were re-analyzed. Compared to the original evaluation published five years ago, nearly 1000 additional proteins could be identified in the mitochondrial fraction, providing new insights into the Oxidative Phosphorylation System of V. album. The VaGs II database is available at https://viscumalbum.pflanzenproteomik.de/. Furthermore, all V. album sequences have been uploaded at the European Nucleotide Archive (ENA).
Collapse
Affiliation(s)
- Lucie Schröder
- Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Michael Senkler
- Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Nils Rugen
- Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Natalija Hohnjec
- Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Helge Küster
- Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Hans-Peter Braun
- Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
5
|
Whiteman NK. Mistletoes. Curr Biol 2023; 33:R467-R469. [PMID: 37279675 DOI: 10.1016/j.cub.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whiteman introduces mistletoes, above-ground parasitic plants.
Collapse
Affiliation(s)
- Noah K Whiteman
- Department of Integrative Biology. University of California, Berkeley, CA, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
6
|
Nicoletti M. The Anti-Inflammatory Activity of Viscum album. PLANTS (BASEL, SWITZERLAND) 2023; 12:1460. [PMID: 37050086 PMCID: PMC10096603 DOI: 10.3390/plants12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The therapeutic story of European mistletoe (Viscum album L.) presents a seesawing profile. In ancient times, this hemiparasitic plant was considered a panacea and even to be endowed with exceptional beneficial properties. In more recent times, despite its multiple uses in traditional medicines, some parts of the plant, in particular the berries, were considered poisonous and dangerous, including concerns of cytotoxicity, which spread serious suspicion on its medicinal utility. However, since the last century, medical interest in mistletoe has come back in force due to its utilization in clinical cancer treatments, based on its selective action on tumor cells. In Central Europe, the hydro-alcoholic extracts of European mistletoe register a relevant and continuous utilization in anthroposophic medicine, which is a holistic system that includes the utilization of phytomedicinal substances. In Switzerland and Germany, most physicians and patients use these products as complementary therapy in oncological treatments. However, despite its increasing use in this field, the results of mistletoe's use are not always convincing, and other aspects have appeared. Nowadays, products that contain mistletoe are utilized in several fields, including diet, phytotherapy, veterinary medicine and homeopathy, but in particular in cancer therapies as coadjuvant factors, in consideration of several positive effects including effects in the improvement of quality-of-life conditions and reinforcement of the immune system. In this review, based on the understanding of the association between cancer and inflammation, we propose a relationship between these recent uses of mistletoe, based on its antioxidant properties, which are supported by phytochemical and pharmacological data. The unicity of mistletoe metabolism, which is a direct consequence of its hemiparasitism, is utilized as a key interpretation element to explain its biological properties and steer its consequent therapeutic uses.
Collapse
Affiliation(s)
- Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Schröder L, Hegermann J, Pille P, Braun HP. The photosynthesis apparatus of European mistletoe (Viscum album). PLANT PHYSIOLOGY 2022; 190:1896-1914. [PMID: 35976139 PMCID: PMC9614478 DOI: 10.1093/plphys/kiac377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
European mistletoe (Viscum album) is known for its special mode of cellular respiration. It lacks the mitochondrial NADH dehydrogenase complex (Complex I of the respiratory chain) and has restricted capacities to generate mitochondrial adenosine triphosphate (ATP). Here, we present an investigation of the V. album energy metabolism taking place in chloroplasts. Thylakoids were purified from young V. album leaves, and membrane-bound protein complexes were characterized by Blue native polyacrylamide gel electrophoresis as well as by the complexome profiling approach. Proteins were systematically identified by label-free quantitative shotgun proteomics. We identified >1,800 distinct proteins (accessible at https://complexomemap.de/va_leaves), including nearly 100 proteins forming part of the protein complexes involved in the light-dependent part of photosynthesis. The photosynthesis apparatus of V. album has distinct features: (1) comparatively low amounts of Photosystem I; (2) absence of the NDH complex (the chloroplast pendant of mitochondrial Complex I involved in cyclic electron transport (CET) around Photosystem I); (3) reduced levels of the proton gradient regulation 5 (PGR5) and proton gradient regulation 5-like 1 (PGRL1) proteins, which offer an alternative route for CET around Photosystem I; (4) comparable amounts of Photosystem II and the chloroplast ATP synthase complex to other seed plants. Our data suggest a restricted capacity for chloroplast ATP biosynthesis by the photophosphorylation process. This is in addition to the limited ATP supply by the mitochondria. We propose a view on mistletoe's mode of life, according to which its metabolism relies to a greater extent on energy-rich compounds provided by the host trees.
Collapse
Affiliation(s)
- Lucie Schröder
- Institut für Pflanzgenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jan Hegermann
- Institut für Funktionelle und Angewandte Anatomie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Patrick Pille
- Institut für Pflanzgenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | | |
Collapse
|
8
|
The future of Viscum album L. in Europe will be shaped by temperature and host availability. Sci Rep 2022; 12:17072. [PMID: 36224233 PMCID: PMC9556578 DOI: 10.1038/s41598-022-21532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022] Open
Abstract
Viscum album L. is a plant of great importance due to its influence on the host trees and, by extension, entire ecosystems. The species is also significant to humans-on the one hand, because of its use in medicine, and on the other, because of the growing threat it poses to the stability of conifer stands. Therefore, it is important to recognize the future range of three mistletoe subspecies (Viscum album subsp. album, V. album subsp. austriacum, and V. album subsp. abietis). Modelling of the potential range of these subspecies was performed using MAXENT software. Locations were collected from literature and databases. A total number of 3335 stands were used. Bioclimatic data for the current conditions and three future scenarios (SSP 1.26, SSP 3.70, SSP 5.85) were downloaded from the CHELSA database. The results confirmed that the temperature is the key variable on the potential range of the analysed subspecies. V. album subsp. abietis is withdrawing from its range according to all scenarios. In the case of V. album subsp. austriacum, a slight range shift is visible. Only the V. album subsp. album will expand non-directionally. The reason is most likely a very large number of host species and greater genetic variability compared to the subspecies found on conifers.
Collapse
|
9
|
Meyer EH, Letts JA, Maldonado M. Structural insights into the assembly and the function of the plant oxidative phosphorylation system. THE NEW PHYTOLOGIST 2022; 235:1315-1329. [PMID: 35588181 DOI: 10.1111/nph.18259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 05/23/2023]
Abstract
One of the key functions of mitochondria is the production of ATP to support cellular metabolism and growth. The last step of mitochondrial ATP synthesis is performed by the oxidative phosphorylation (OXPHOS) system, an ensemble of protein complexes embedded in the inner mitochondrial membrane. In the last 25 yr, many structures of OXPHOS complexes and supercomplexes have been resolved in yeast, mammals, and bacteria. However, structures of plant OXPHOS enzymes only became available very recently. In this review, we highlight the plant-specific features revealed by the recent structures and discuss how they advance our understanding of the function and assembly of plant OXPHOS complexes. We also propose new hypotheses to be tested and discuss older findings to be re-evaluated. Further biochemical and structural work on the plant OXPHOS system will lead to a deeper understanding of plant respiration and its regulation, with significant agricultural, environmental, and societal implications.
Collapse
Affiliation(s)
- Etienne H Meyer
- Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Maria Maldonado
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|