1
|
Trenk NK, Pacheco-Moreno A, Arora S. Understanding the root of the problem for tackling pea root rot disease. Front Microbiol 2024; 15:1441814. [PMID: 39512933 PMCID: PMC11540676 DOI: 10.3389/fmicb.2024.1441814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Pea (Pisum sativum), a crop historically significant in the field of genetics, is regaining momentum in sustainable agriculture due to its high protein content and environmental benefits. However, its cultivation faces significant challenges from root rot, a complex disease caused by multiple soil-borne pathogens prevalent across most pea growing regions. This disease leads to substantial yield losses, further complicated by the dynamic interactions among pathogens, soil conditions, weather, and agricultural practices. Recent advancements in molecular diagnostics provide promising tools for the early and precise detection of these pathogens, which is critical for implementing effective disease management strategies. In this review, we explore how the availability of latest pea genomic resources and emerging technologies, such as CRISPR and cell-specific transcriptomics, will enable a deeper understanding of the molecular basis underlying host-pathogen interactions. We emphasize the need for a comprehensive approach that integrates genetic resistance, advanced diagnostics, cultural practices and the role of the soil microbiome in root rot. By leveraging these strategies, it is possible to develop pea varieties that can withstand root rot, ensuring the crop's resilience and its continued importance in global agriculture.
Collapse
Affiliation(s)
| | | | - Sanu Arora
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
2
|
Goldstein ST, Mueller NG, Janzen A, Ogola C, Dal Martello R, Fernandes R, Li S, Iminjili V, Juengst S, Odera Otwani A, Sawchuk EA, Wang K, Ndiema E, Boivin N. Early agriculture and crop transitions at Kakapel Rockshelter in the Lake Victoria region of eastern Africa. Proc Biol Sci 2024; 291:20232747. [PMID: 38981530 PMCID: PMC11335020 DOI: 10.1098/rspb.2023.2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
The histories of African crops remain poorly understood despite their contemporary importance. Integration of crops from western, eastern and northern Africa probably first occurred in the Great Lakes Region of eastern Africa; however, little is known about when and how these agricultural systems coalesced. This article presents archaeobotanical analyses from an approximately 9000-year archaeological sequence at Kakapel Rockshelter in western Kenya, comprising the largest and most extensively dated archaeobotanical record from the interior of equatorial eastern Africa. Direct radiocarbon dates on carbonized seeds document the presence of the West African crop cowpea (Vigna unguiculata (L.) Walp) approximately 2300 years ago, synchronic with the earliest date for domesticated cattle (Bos taurus). Peas (Pisum sativum L. or Pisum abyssinicum A. Braun) and sorghum (Sorghum bicolor (L.) Moench) from the northeast and eastern African finger millet (Eleusine coracana (L.) Gaertn.) are incorporated later, by at least 1000 years ago. Combined with ancient DNA evidence from Kakapel and the surrounding region, these data support a scenario in which the use of diverse domesticated species in eastern Africa changed over time rather than arriving and being maintained as a single package. Findings highlight the importance of local heterogeneity in shaping the spread of food production in sub-Saharan Africa.
Collapse
Affiliation(s)
- Steven T. Goldstein
- Department of Anthropology, University of Pittsburgh, WWPH 3302, S. Bouquet St, Pittsburgh, PA15260, USA
| | - Natalie G. Mueller
- Department of Anthropology, Washington University in St. Louis, McMillan Hall, 1 Brookings Dr, Saint Louis, MO63130, USA
| | - Anneke Janzen
- Department of Anthropology, University of Tennessee, Knoxville, TN, USA
| | - Christine Ogola
- Department of Archaeology, National Museums of Kenya, Nairobi, Kenya
| | - Rita Dal Martello
- Department of Asian and North African Studies, Ca’Foscari University of Venice, Venice, Italy
| | - Ricardo Fernandes
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Faculty of Archaeology, University of Warsaw, Warsaw, Poland
- Faculty of Arts, Masaryk University, Brno, Czech Republic
- School of Archaeology, Climate Change and History Research Initiative, Princeton University, Princeton, NJ08544, USA
| | - Sophia Li
- Department of Anthropology, Washington University in St. Louis, McMillan Hall, 1 Brookings Dr, Saint Louis, MO63130, USA
| | - Victor Iminjili
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Sara Juengst
- Department of Anthropology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | - Elizabeth A. Sawchuk
- Cleveland Museum of Natural History, Cleveland, OH, USA
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Ke Wang
- School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Emmanuel Ndiema
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- School of Social Science, University of Queensland, Brisbane, Australia
- Griffith Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|
3
|
Klčová B, Balarynová J, Trněný O, Krejčí P, Cechová MZ, Leonova T, Gorbach D, Frolova N, Kysil E, Orlova A, Ihling С, Frolov A, Bednář P, Smýkal P. Domestication has altered gene expression and secondary metabolites in pea seed coat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2269-2295. [PMID: 38578789 DOI: 10.1111/tpj.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.
Collapse
Affiliation(s)
- Barbora Klčová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Jana Balarynová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Oldřich Trněný
- Agricultural Research Ltd., Zemědělská 1, Troubsko, 664 41, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Monika Zajacová Cechová
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Nadezhda Frolova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Сhristian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle (Saale), 06120, Germany
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| |
Collapse
|
4
|
Williams OR, Vander Schoor JK, Butler JB, Hecht VFG, Weller JL. Physical seed dormancy in pea is genetically separable from seed coat thickness and roughness. FRONTIERS IN PLANT SCIENCE 2024; 15:1359226. [PMID: 38476691 PMCID: PMC10927720 DOI: 10.3389/fpls.2024.1359226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Introduction The seeds of wild pea (Pisum) exhibit marked physical dormancy due to impermeability of the seed coat to water, and the loss of this dormancy is thought to have been critical for domestication. Wild pea seed coats are also notably thick and rough, traits that have also reduced during domestication and are anecdotally linked to increased permeability. However, how these traits specifically interact with permeability is unclear. Methods To investigate this, we examined the genetic control of differences in seed coat characteristics between wild P. sativum ssp. humile and a non-dormant domesticated P. s. sativum accession in a recombinant inbred population. QTL effects were confirmed and their locations refined in segregating F4/5 populations. Results In this population we found a moderate correlation between testa thickness and permeability, and identified loci that affect them independently, suggesting no close functional association. However, the major loci affecting both testa thickness and permeability collocated closely with Mendel's pigmentation locus A, suggesting flavonoid compounds under its control might contribute significantly to both traits. We also show that seed coat roughness is oligogenic in this population, with the major locus independent of both testa thickness and permeability, suggesting selection for smooth seed was unlikely to be due to effects on either of these traits. Discussion Results indicate loss of seed coat dormancy during domestication was not primarily driven by reduced testa thickness or smooth seededness. The close association between major permeability and thickness QTL and Mendel's 'A' warrant further study, particularly regarding the role of flavonoids.
Collapse
Affiliation(s)
- Owen R. Williams
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Jacqueline K. Vander Schoor
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Jakob B. Butler
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| | | | - James L. Weller
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
5
|
Ellis N, Hofer J, Sizer-Coverdale E, Lloyd D, Aubert G, Kreplak J, Burstin J, Cheema J, Bal M, Chen Y, Deng S, Wouters RHM, Steuernagel B, Chayut N, Domoney C. Recombinant inbred lines derived from wide crosses in Pisum. Sci Rep 2023; 13:20408. [PMID: 37990072 PMCID: PMC10663473 DOI: 10.1038/s41598-023-47329-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023] Open
Abstract
Genomic resources are becoming available for Pisum but to link these to phenotypic diversity requires well marked populations segregating for relevant traits. Here we describe two such resources. Two recombinant inbred populations, derived from wide crosses in Pisum are described. One high resolution mapping population involves cv Caméor, for which the first pea whole genome assembly was obtained, crossed to JI0281, a basally divergent P. sativum sativum landrace from Ethiopia. The other is an inter sub-specific cross between P. s. sativum and the independently domesticated P. s. abyssinicum. The corresponding genetic maps provide information on chromosome level sequence assemblies and identify structural differences between the genomes of these two Pisum subspecies. In order to visualise chromosomal translocations that distinguish the mapping parents, we created a simplified version of Threadmapper to optimise it for interactive 3-dimensional display of multiple linkage groups. The genetic mapping of traits affecting seed coat roughness and colour, plant height, axil ring pigmentation, leaflet number and leaflet indentation enabled the definition of their corresponding genomic regions. The consequence of structural rearrangement for trait analysis is illustrated by leaf serration. These analyses pave the way for identification of the underlying genes and illustrate the utility of these publicly available resources. Segregating inbred populations derived from wide crosses in Pisum, together with the associated marker data, are made publicly available for trait dissection. Genetic analysis of these populations is informative about chromosome scale assemblies, structural diversity in the pea genome and has been useful for the fine mapping of several discrete and quantitative traits.
Collapse
Affiliation(s)
- N Ellis
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, UK.
| | - J Hofer
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, UK
| | - E Sizer-Coverdale
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, UK
- Germinal Horizon, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, UK
| | - D Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, UK
- Germinal Horizon, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, UK
| | - G Aubert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - J Kreplak
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - J Burstin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - J Cheema
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - M Bal
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Y Chen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - S Deng
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - R H M Wouters
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - B Steuernagel
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - N Chayut
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - C Domoney
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
6
|
New Insights into Plastid and Mitochondria Evolution in Wild Peas (Pisum L.). DIVERSITY 2023. [DOI: 10.3390/d15020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastids and mitochondria are organelles of plant cells with small genomes, which may exhibit discordant microevolution as we earlier revealed in pea crop wild relatives. We sequenced 22 plastid and mitochondrial genomes of Pisum sativum subsp. elatius and Pisum fulvum using Illumina platform, so that the updated sample comprised 64 accessions. Most wild peas from continental southern Europe and a single specimen from Morocco were found to share the same organellar genome constitution; four others, presumably hybrid constitutions, were revealed in Mediterranean islands and Athos Peninsula. A mitochondrial genome closely related to that of Pisum abyssinicum, from Yemen and Ethiopia, was unexpectedly found in an accession of P. sativum subsp. elatius from Israel, their plastid genomes being unrelated. Phylogenetic reconstructions based on plastid and mitochondrial genomes revealed different sets of wild peas to be most related to cultivated P. sativum subsp. sativum, making its wild progenitor and its origin area enigmatic. An accession of P. fulvum representing ‘fulvum-b’ branch, according to a nuclear marker, appeared in the same branch as other fulvum accessions in organellar trees. The results stress the complicated evolution and structure of genetic diversity of pea crop wild relatives.
Collapse
|
7
|
Rispail N, Wohor OZ, Osuna-Caballero S, Barilli E, Rubiales D. Genetic Diversity and Population Structure of a Wide Pisum spp. Core Collection. Int J Mol Sci 2023; 24:2470. [PMID: 36768792 PMCID: PMC9916889 DOI: 10.3390/ijms24032470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Peas (Pisum sativum) are the fourth most cultivated pulses worldwide and a critical source of protein in animal feed and human food. Developing pea core collections improves our understanding of pea evolution and may ease the exploitation of their genetic diversity in breeding programs. We carefully selected a highly diverse pea core collection of 325 accessions and established their genetic diversity and population structure. DArTSeq genotyping provided 35,790 polymorphic DArTseq markers, of which 24,279 were SilicoDArT and 11,511 SNP markers. More than 90% of these markers mapped onto the pea reference genome, with an average of 2787 SilicoDArT and 1644 SNP markers per chromosome, and an average LD50 distance of 0.48 and 1.38 Mbp, respectively. The pea core collection clustered in three or six subpopulations depending on the pea subspecies. Many admixed accessions were also detected, confirming the frequent genetic exchange between populations. Our results support the classification of Pisum genus into two species, P. fulvum and P. sativum (including subsp. sativum, arvense, elatius, humile, jomardii and abyssinicum). In addition, the study showed that wild alleles were incorporated into the cultivated pea through the intermediate P. sativum subsp. jomardii and P. sativum subsp. arvense during pea domestication, which have important implications for breeding programs. The high genetic diversity found in the collection and the high marker coverage are also expected to improve trait discovery and the efficient implementation of advanced breeding approaches.
Collapse
Affiliation(s)
- Nicolas Rispail
- Instituto de Agricultura Sostenible, CSIC, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Osman Zakaria Wohor
- Instituto de Agricultura Sostenible, CSIC, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Savanna Agriculture Research Institute, CSIR, Nyankpala, Tamale P.O. Box TL52, Ghana
| | | | - Eleonora Barilli
- Instituto de Agricultura Sostenible, CSIC, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, CSIC, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
8
|
Bohra A, Tiwari A, Kaur P, Ganie SA, Raza A, Roorkiwal M, Mir RR, Fernie AR, Smýkal P, Varshney RK. The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies. PLANT & CELL PHYSIOLOGY 2022; 63:1554-1572. [PMID: 35713290 PMCID: PMC9680861 DOI: 10.1093/pcp/pcac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.
Collapse
Affiliation(s)
- Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Abha Tiwari
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kalyanpur, Kanpur 208024, India
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, Santiniketan Road, Bolpur 731235, India
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), UAE University, Sheik Khalifa Bin Zayed Street, Al Ain, Abu Dhabi 15551, UAE
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Shalimar, Srinagar 190025, India
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Křížkovského 511/8, Olomouc 78371, Czech Republic
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
9
|
Yang T, Liu R, Luo Y, Hu S, Wang D, Wang C, Pandey MK, Ge S, Xu Q, Li N, Li G, Huang Y, Saxena RK, Ji Y, Li M, Yan X, He Y, Liu Y, Wang X, Xiang C, Varshney RK, Ding H, Gao S, Zong X. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet 2022; 54:1553-1563. [PMID: 36138232 PMCID: PMC9534762 DOI: 10.1038/s41588-022-01172-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/26/2022] [Indexed: 12/21/2022]
Abstract
Complete and accurate reference genomes and annotations provide fundamental resources for functional genomics and crop breeding. Here we report a de novo assembly and annotation of a pea cultivar ZW6 with contig N50 of 8.98 Mb, which features a 243-fold increase in contig length and evident improvements in the continuity and quality of sequence in complex repeat regions compared with the existing one. Genome diversity of 118 cultivated and wild pea demonstrated that Pisum abyssinicum is a separate species different from P. fulvum and P. sativum within Pisum. Quantitative trait locus analyses uncovered two known Mendel's genes related to stem length (Le/le) and seed shape (R/r) as well as some candidate genes for pod form studied by Mendel. A pan-genome of 116 pea accessions was constructed, and pan-genes preferred in P. abyssinicum and P. fulvum showed distinct functional enrichment, indicating the potential value of them as pea breeding resources in the future.
Collapse
Affiliation(s)
- Tao Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingfeng Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Chenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nana Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Guan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuning Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rachit K Saxena
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Yishan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengwei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua He
- Institute of Grain Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, China
| | - Xuejun Wang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Chao Xiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanfeng Ding
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.
- College of Life Science, Shandong Normal University, Jinan, China.
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Xuxiao Zong
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|