1
|
Zhu F, Li K, Cao M, Zhang Q, Zhou Y, Chen H, AlKhazindar M, Ji Z. NbNAC1 enhances plant immunity against TMV by regulating isochorismate synthase 1 expression and the SA pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17242. [PMID: 39968571 DOI: 10.1111/tpj.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Salicylic acid (SA) plays important roles in plant local and systemic resistance. Isochorismate synthase 1 (ICS1) is a key enzyme in SA synthesis. Pathogens infection triggered the ICS1 expression and induced SA production. However, the molecular regulation mechanism of ICS1 against virus infection remains unclear. Here, we employed molecular genetics and physiobiochemical approaches to confirm a transcription factor NbNAC1 from Nicotiana benthamiana is a positive regulator of resistance against tobacco mosaic virus (TMV). The pathways NbNAC1 and NbICS1 can be triggered by TMV infection. Silencing NbNAC1 accelerated TMV-induced oxidative damage and increased reactive oxygen species (ROS) production. It also weakened both local and systemic resistance against TMV and decreased the expression of NbICS1, SA signaling gene NbNPR1, and SA defense-related genes. The effects of NbNAC1-silencing were restored by overexpression of NbICS1 or foliar SA applications. Overexpressing NbNAC1 prevented oxidative damage and reduced the production of ROS, enhanced plant resistance against viral pathogen, and activated NbICS1 expression, and SA downstream signaling and defense-related genes. NbNAC1 localized in nuclear and emerged the ability of transcriptional regulation. ChIP and EMSA results indicated that NbNAC1 directly binds to a fragment containing GAAATT motif of NbICS1 promoter. Luciferase reporter assays confirmed that NbNAC1 activates NbICS1 expression. Taken together, our results demonstrate that NbNAC1 plays a critical role in plant immunity through activation of SA production.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kainan Li
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Mengyao Cao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiping Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yangkai Zhou
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Zhaolin Ji
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
2
|
Zhao M, Zhang L, Ghanem H, Wu G, Li M, Qing L. Ethylene response transcription factor 5 (ERF5) enhances defense against tobacco curly shoot virus and associated betasatellite (TbCSV/TbCSB) in Nicotiana benthamiana. Virology 2025; 603:110309. [PMID: 39673969 DOI: 10.1016/j.virol.2024.110309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
Begomovirus/betasatellite disease complex significantly threatens global crop production. Identifying potential plant antiviral genes is crucial for disease control. Nicotiana benthamiana is susceptible to viruses and contains 266 ethylene response transcription factors (ERFs). This study identified 29 NbERFs that were differentially upregulated in tobacco curly shoot virus and its associated betasatellite (TbCSV/TbCSB) infection, with ERF5 being the most common. Nine NbERF5s cluster phylogenetically and Niben101Scf00163g22002 (NbERF5) responds significantly to exogenous ACC treatment. Further analysis confirms the nuclear localization and transcriptional activation activity of NbERF5. Protein interaction assays demonstrate that NbERF5 has no self-interaction and does not interact with the βC1 protein of TbCSB. Silencing NbERF5 enhances TbCSV/TbCSB infection, and overexpression of NbERF5 inhibits TbCSV/TbCSB infection. Importantly, NbERF5 positively regulates the expression of the pathogenesis-related (PR) genes, NbPR1a and NbNPR1. Our findings suggest that NbERF5 enhances TbCSV/TbCSB resistance by activating the PR genes, indicating that NbERF5 is a potential antiviral gene.
Collapse
Affiliation(s)
- Meisheng Zhao
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Liping Zhang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Hussein Ghanem
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China; National Citrus Engineering Research Center, Southwest University, Chongqing, 400712, China.
| |
Collapse
|
3
|
Shi L, Fan Y, Yang Y, Yan S, Qiu Z, Liu Z, Cao B. CaWRKY22b Plays a Positive Role in the Regulation of Pepper Resistance to Ralstonia solanacearum in a Manner Associated with Jasmonic Acid Signaling. PLANTS (BASEL, SWITZERLAND) 2024; 13:2081. [PMID: 39124199 PMCID: PMC11314181 DOI: 10.3390/plants13152081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
As important transcription factors, WRKYs play a vital role in the defense response of plants against the invasion of multiple pathogens. Though some WRKY members have been reported to participate in pepper immunity in response to Ralstonia solanacearum infection, the functions of the majority of WRKY members are still unknown. Herein, CaWRKY22b was cloned from the pepper genome and its function against R. solanacearum was analyzed. The transcript abundance of CaWRKY22b was significantly increased in response to the infection of R. solanacearum and the application of exogenous methyl jasmonate (MeJA). Subcellular localization assay in the leaves of Nicotiana benthamiana showed that CaWRKY22b protein was targeted to the nuclei. Agrobacterium-mediated transient expression in pepper leaves indicated that CaWRKY22b overexpression triggered intensive hypersensitive response-like cell death, H2O2 accumulation, and the up-regulation of defense- and JA-responsive genes, including CaHIR1, CaPO2, CaBPR1, and CaDEF1. Virus-induced gene silencing assay revealed that knock-down of CaWRKY22b attenuated pepper's resistance against R. solanacearum and the up-regulation of the tested defense- and jasmonic acid (JA)-responsive genes. We further assessed the role of CaWRKY22b in modulating the expression of JA-responsive CaDEF1, and the result demonstrated that CaWRKY22b trans-activated CaDEF1 expression by directly binding to its upstream promoter. Collectively, our results suggest that CaWRKY22b positively regulated pepper immunity against R. solanacearum in a manner associated with JA signaling, probably by modulating the expression of JA-responsive CaDEF1.
Collapse
Affiliation(s)
- Lanping Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (L.S.); (S.Y.); (Z.Q.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (Y.Y.)
| | - Yuemin Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (Y.Y.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingjie Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (Y.Y.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (L.S.); (S.Y.); (Z.Q.)
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (L.S.); (S.Y.); (Z.Q.)
| | - Zhiqin Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (Y.Y.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (L.S.); (S.Y.); (Z.Q.)
| |
Collapse
|
4
|
Cai W, Tao Y, Cheng X, Wan M, Gan J, Yang S, Okita TW, He S, Tian L. CaIAA2-CaARF9 module mediates the trade-off between pepper growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2054-2074. [PMID: 38450864 PMCID: PMC11182598 DOI: 10.1111/pbi.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.
Collapse
Affiliation(s)
- Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Xingge Cheng
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Meiyun Wan
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Sheng Yang
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Thomas W. Okita
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Shuilin He
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| |
Collapse
|
5
|
Shi L, Shi W, Qiu Z, Yan S, Liu Z, Cao B. CaMAPK1 Plays a Vital Role in the Regulation of Resistance to Ralstonia solanacearum Infection and Tolerance to Heat Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1775. [PMID: 38999615 PMCID: PMC11243954 DOI: 10.3390/plants13131775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
As an important member of mitogen-activated protein kinase (MAPK) cascades, MAPKs play an important role in plant defense response against biotic and abiotic stresses; however, the involvement of the majority of the MAPK family members against Ralstonia solanacearum and heat stress (HS) remains poorly understood. In the present study, CaMAPK1 was identified from the genome of pepper and its function against R. solanacearum and HS was analyzed. The transcript accumulations of CaMAPK1 and the activities of its native promoter were both significantly induced by R. solanacearum inoculation, HS, and the application of exogenous hormones, including SA, MeJA, and ABA. Transient expression of CaMAPK1 showed that CaMAPK1 can be targeted throughout the whole cells in Nicotiana benthamiana and triggered chlorosis and hypersensitive response-like cell death in pepper leaves, accompanied by the accumulation of H2O2, and the up-regulations of hormones- and H2O2-associated marker genes. The knock-down of CaMAPK1 enhanced the susceptibility to R. solanacearum partially by down-regulating the expression of hormones- and H2O2-related genes and impairing the thermotolerance of pepper probably by attenuating CaHSFA2 and CaHSP70-1 transcripts. Taken together, our results revealed that CaMAPK1 is regulated by SA, JA, and ABA signaling and coordinates responses to R. solanacearum infection and HS in pepper.
Collapse
Affiliation(s)
- Lanping Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Wei Shi
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| |
Collapse
|
6
|
Hussain A, Qayyum A, Farooq S, Almutairi SM, Rasheed RA, Qadir M, Vyhnánek T, Sun Y. Pepper immunity against Ralstonia solanacearum is positively regulated by CaWRKY3 through modulation of different WRKY transcription factors. BMC PLANT BIOLOGY 2024; 24:522. [PMID: 38853241 PMCID: PMC11163704 DOI: 10.1186/s12870-024-05143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Several WRKY transcription factors (TFs), including CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 are known to govern the resistance of pepper (Capsicum annuum L.) plants to Ralstonia solanacearum infestation (RSI) and other abiotic stresses. However, the molecular mechanisms underlying these processes remain elusive. METHODS This study functionally described CaWRKY3 for its role in pepper immunity against RSI. The roles of phytohormones in mediating the expression levels of CaWRKY3 were investigated by subjecting pepper plants to 1 mM salicylic acid (SA), 100 µM methyl jasmonate (MeJA), and 100 µM ethylene (ETH) at 4-leaf stage. A virus-induced gene silencing (VIGS) approach based on the Tobacco Rattle Virus (TRV) was used to silence CaWRKY3 in pepper, and transiently over-expressed to infer its role against RSI. RESULTS Phytohormones and RSI increased CaWRKY3 transcription. The transcriptions of defense-associated marker genes, including CaNPR1, CaPR1, CaDEF1, and CaHIR1 were decreased in VIGS experiment, which made pepper less resistant to RSI. Significant hypersensitive (HR)-like cell death, H2O2 buildup, and transcriptional up-regulation of immunological marker genes were noticed in pepper when CaWRKY3 was transiently overexpressed. Transcriptional activity of CaWRKY3 was increased with overexpression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40, and vice versa. In contrast, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) was easily repelled by the innate immune system of transgenic Arabidopsis thaliana that overexpressed CaWRKY3. The transcriptions of defense-related marker genes like AtPR1, AtPR2, and AtNPR1 were increased in CaWRKY3-overexpressing transgenic A. thaliana plants. CONCLUSION It is concluded that CaWRKY3 favorably regulates phytohormone-mediated synergistic signaling, which controls cell death in plant and immunity of pepper plant against bacterial infections.
Collapse
Affiliation(s)
- Ansar Hussain
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Science and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa, 63050, Türkiye.
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Rabab Ahmed Rasheed
- Histology & Cell Biology Department, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Masood Qadir
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Tomáš Vyhnánek
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic
| | - Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
7
|
Wei Y, Zhu B, Zhang Y, Ma G, Wu J, Tang L, Shi H. CPK1-HSP90 phosphorylation and effector XopC2-HSP90 interaction underpin the antagonism during cassava defense-pathogen infection. THE NEW PHYTOLOGIST 2024; 242:2734-2745. [PMID: 38581188 DOI: 10.1111/nph.19739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.
Collapse
Affiliation(s)
- Yunxie Wei
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Binbin Zhu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Ye Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Guowen Ma
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Jingyuan Wu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Luzhi Tang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| |
Collapse
|
8
|
Liu K, Shi L, Luo H, Zhang K, Liu J, Qiu S, Li X, He S, Liu Z. Ralstonia solanacearum effector RipAK suppresses homodimerization of the host transcription factor ERF098 to enhance susceptibility and the sensitivity of pepper plants to dehydration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:121-144. [PMID: 37738430 DOI: 10.1111/tpj.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Plants have evolved a sophisticated immune system to defend against invasion by pathogens. In response, pathogens deploy copious effectors to evade the immune responses. However, the molecular mechanisms used by pathogen effectors to suppress plant immunity remain unclear. Herein, we report that an effector secreted by Ralstonia solanacearum, RipAK, modulates the transcriptional activity of the ethylene-responsive factor ERF098 to suppress immunity and dehydration tolerance, which causes bacterial wilt in pepper (Capsicum annuum L.) plants. Silencing ERF098 enhances the resistance of pepper plants to R. solanacearum infection not only by inhibiting the host colonization of R. solanacearum but also by increasing the immunity and tolerance of pepper plants to dehydration and including the closure of stomata to reduce the loss of water in an abscisic acid signal-dependent manner. In contrast, the ectopic expression of ERF098 in Nicotiana benthamiana enhances wilt disease. We also show that RipAK targets and inhibits the ERF098 homodimerization to repress the expression of salicylic acid-dependent PR1 and dehydration tolerance-related OSR1 and OSM1 by cis-elements in their promoters. Taken together, our study reveals a regulatory mechanism used by the R. solanacearum effector RipAK to increase virulence by specifically inhibiting the homodimerization of ERF098 and reprogramming the transcription of PR1, OSR1, and OSM1 to boost susceptibility and dehydration sensitivity. Thus, our study sheds light on a previously unidentified strategy by which a pathogen simultaneously suppresses plant immunity and tolerance to dehydration by secreting an effector to interfere with the activity of a transcription factor and manipulate plant transcriptional programs.
Collapse
Affiliation(s)
- Kaisheng Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lanping Shi
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongli Luo
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kan Zhang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianxin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Qiu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Li
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|