1
|
Priego‐Cubero S, Liu Y, Toyomasu T, Gigl M, Hasegawa Y, Nojiri H, Dawid C, Okada K, Becker C. Evolution and diversification of the momilactone biosynthetic gene cluster in the genus Oryza. THE NEW PHYTOLOGIST 2025; 245:2681-2697. [PMID: 39887739 PMCID: PMC11840401 DOI: 10.1111/nph.20416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025]
Abstract
Plants are master chemists and collectively are able to produce hundreds of thousands of different organic compounds. The genes underlying the biosynthesis of many specialized metabolites are organized in biosynthetic gene clusters (BGCs), which is hypothesized to ensure their faithful coinheritance and to facilitate their coordinated expression. In rice (Oryza sativa), momilactones are diterpenoids that act in plant defence and various organismic interactions. Many of the genes essential for momilactone biosynthesis are grouped in a BGC. We applied comparative genomics of diploid and allotetraploid Oryza species to reconstruct the species-specific architecture, evolutionary trajectory, and sub-functionalisation of the momilactone biosynthetic gene cluster (MBGC) in the Oryza genus. Our data show that the evolution of the MBGC is marked by lineage-specific rearrangements and gene copy number variation, as well as by occasional cluster loss. We identified a distinct cluster architecture in Oryza coarctata, which represents the first instance of an alternative architecture of the MBGC in Oryza and strengthens the idea of a common origin of the cluster in Oryza and the distantly related genus Echinochloa. Our research illustrates the evolutionary and functional dynamics of a biosynthetic gene cluster within a plant genus.
Collapse
Affiliation(s)
| | - Youming Liu
- Agro‐Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS)The University of TokyoTokyo113‐8657Japan
| | - Tomonobu Toyomasu
- Faculty of AgricultureYamagata UniversityTsuruokaYamagata997‐8555Japan
| | - Michael Gigl
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichLise‐Meitner‐Str. 3485354FreisingGermany
| | - Yuto Hasegawa
- Faculty of AgricultureYamagata UniversityTsuruokaYamagata997‐8555Japan
| | - Hideaki Nojiri
- Agro‐Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS)The University of TokyoTokyo113‐8657Japan
| | - Corinna Dawid
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichLise‐Meitner‐Str. 3485354FreisingGermany
| | - Kazunori Okada
- Agro‐Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS)The University of TokyoTokyo113‐8657Japan
| | - Claude Becker
- Faculty of BiologyLudwig‐Maximilians‐Universität München82152MartinsriedGermany
| |
Collapse
|
2
|
Feng Y, Yan C, Tu WQ, Yuan YM, Wang JB, Chen XJ, Liu CQ, Gao Y. Multi-disciplinary evidence illuminates the speciation history of a monophyletic yet dimorphic lily group. PLANT DIVERSITY 2025; 47:189-200. [PMID: 40182484 PMCID: PMC11963083 DOI: 10.1016/j.pld.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 04/05/2025]
Abstract
Species boundaries are dynamic and constantly challenged by gene flow. Understanding the strategies different lineages adopt to maintain ecological and genetic distinctiveness requires employing an integrative species concept that incorporates data from a variety of sources. In this study, we incorporated genetic, ecological, and environmental evidence to assess the extent of speciation or evolutionary divergence within a monophyletic yet dimorphic group (i.e., clade Leucolirion consisting of six species) within the genus Lilium. This clade consists of two lineages that exhibit unexpectedly distinct perianth appearances: whitish trumpet (funnel form, encompassing four species) and orange recurved (reflex form, including two species), respectively, which are separated by completely different pollination syndromes. Transcriptome-based nuclear and plastome datasets indicate that these two lineages are isolated, with only weak ancient gene flow between them. Within each lineage, several taxa with incomplete isolation have diverged, as indicated by weak genetic structure, strong gene flow, and conflicts between nuclear and chloroplast phylogenies, especially in the trumpet lineage. Although these taxa are not entirely independent, our evidence indicates that they are diverging, with recent gene flow disappearing and multiple isolation strategies emerging, such as differences in flowering time and niche specialization. Taken together, our findings suggest that species divergence and maintenance in Lilium are driven by a combination of adaptive and non-adaptive processes, highlighting the complex interplay of historical climate changes, ecological adaptation, and gene flow in shaping biodiversity within this genus.
Collapse
Affiliation(s)
- Yu Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Chaochao Yan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Wen-Qin Tu
- Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yu-Mei Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jing-Bo Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiao-Juan Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Chang-Qiu Liu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Yundong Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| |
Collapse
|
3
|
Ji W, Osbourn A, Liu Z. Understanding metabolic diversification in plants: branchpoints in the evolution of specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230359. [PMID: 39343032 PMCID: PMC11439499 DOI: 10.1098/rstb.2023.0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Plants are chemical engineers par excellence. Collectively they make a vast array of structurally diverse specialized metabolites. The raw materials for building new pathways (genes encoding biosynthetic enzymes) are commonly recruited directly or indirectly from primary metabolism. Little is known about how new metabolic pathways and networks evolve in plants, or what key nodes contribute to branches that lead to the biosynthesis of diverse chemicals. Here we review the molecular mechanisms underlying the generation of biosynthetic branchpoints. We also consider examples in which new metabolites are formed through the joining of precursor molecules arising from different biosynthetic routes, a scenario that greatly increases both the diversity and complexity of specialized metabolism. Given the emerging importance of metabolic gene clustering in helping to identify new enzymes and pathways, we further cover the significance of biosynthetic gene clusters in relation to metabolic networks and dedicated biosynthetic pathways. In conclusion, an improved understanding of the branchpoints between metabolic pathways will be key in order to be able to predict and illustrate the complex structure of metabolic networks and to better understand the plasticity of plant metabolism. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Wenjuan Ji
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, UK
| | - Zhenhua Liu
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
4
|
Liu Y, Esposto D, Mahdi LK, Porzel A, Stark P, Hussain H, Scherr-Henning A, Isfort S, Bathe U, Acosta IF, Zuccaro A, Balcke GU, Tissier A. Hordedane diterpenoid phytoalexins restrict Fusarium graminearum infection but enhance Bipolaris sorokiniana colonization of barley roots. MOLECULAR PLANT 2024; 17:1307-1327. [PMID: 39001606 DOI: 10.1016/j.molp.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-β-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Dario Esposto
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Lisa K Mahdi
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Pauline Stark
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Anja Scherr-Henning
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Simon Isfort
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Ulschan Bathe
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Iván F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alga Zuccaro
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany.
| |
Collapse
|
5
|
Kariya K, Mori H, Ueno M, Yoshikawa T, Teraishi M, Yabuta Y, Ueno K, Ishihara A. Identification and evolution of a diterpenoid phytoalexin oryzalactone biosynthetic gene in the genus Oryza. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:358-372. [PMID: 38194491 DOI: 10.1111/tpj.16608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
The natural variation of plant-specialized metabolites represents the evolutionary adaptation of plants to their environments. However, the molecular mechanisms that account for the diversification of the metabolic pathways have not been fully clarified. Rice plants resist attacks from pathogens by accumulating diterpenoid phytoalexins. It has been confirmed that the composition of rice phytoalexins exhibits numerous natural variations. Major rice phytoalexins (momilactones and phytocassanes) are accumulated in most cultivars, although oryzalactone is a cultivar-specific compound. Here, we attempted to reveal the evolutionary trajectory of the diversification of phytoalexins by analyzing the oryzalactone biosynthetic gene in Oryza species. The candidate gene, KSLX-OL, which accounts for oryzalactone biosynthesis, was found around the single-nucleotide polymorphisms specific to the oryzalactone-accumulating cultivars in the long arm of chromosome 11. The metabolite analyses in Nicotiana benthamiana and rice plants overexpressing KSLX-OL indicated that KSLX-OL is responsible for the oryzalactone biosynthesis. KSLX-OL is an allele of KSL8 that is involved in the biosynthesis of another diterpenoid phytoalexin, oryzalexin S and is specifically distributed in the AA genome species. KSLX-NOL and KSLX-bar, which encode similar enzymes but are not involved in oryzalactone biosynthesis, were also found in AA genome species. The phylogenetic analyses of KSLXs, KSL8s, and related pseudogenes (KSL9s) indicated that KSLX-OL was generated from a common ancestor with KSL8 and KSL9 via gene duplication, functional differentiation, and gene fusion. The wide distributions of KSLX-OL and KSL8 in AA genome species demonstrate their long-term coexistence beyond species differentiation, suggesting a balancing selection between the genes.
Collapse
Affiliation(s)
- Keisuke Kariya
- The United Graduate School of Agricultural Sciences, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Haruka Mori
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Makoto Ueno
- Faculty of Life and Environmental Sciences, Shimane University, Nishikawatsu 1060, Matsue, 690-8504, Japan
| | - Takanori Yoshikawa
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto, 606-8502, Japan
| | - Yukinori Yabuta
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| |
Collapse
|
6
|
Sun W, Yin Q, Wan H, Gao R, Xiong C, Xie C, Meng X, Mi Y, Wang X, Wang C, Chen W, Xie Z, Xue Z, Yao H, Sun P, Xie X, Hu Z, Nelson DR, Xu Z, Sun X, Chen S. Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis. Nat Commun 2023; 14:6470. [PMID: 37833361 PMCID: PMC10576086 DOI: 10.1038/s41467-023-42253-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Horse chestnut (Aesculus chinensis) is an important medicinal tree that contains various bioactive compounds, such as aescin, barrigenol-type triterpenoid saponins (BAT), and aesculin, a glycosylated coumarin. Herein, we report a 470.02 Mb genome assembly and characterize an Aesculus-specific whole-genome duplication event, which leads to the formation and duplication of two triterpenoid biosynthesis-related gene clusters (BGCs). We also show that AcOCS6, AcCYP716A278, AcCYP716A275, and AcCSL1 genes within these two BGCs along with a seed-specific expressed AcBAHD6 are responsible for the formation of aescin. Furthermore, we identify seven Aesculus-originated coumarin glycoside biosynthetic genes and achieve the de novo synthesis of aesculin in E. coli. Collinearity analysis shows that the collinear BGC segments can be traced back to early-diverging angiosperms, and the essential gene-encoding enzymes necessary for BAT biosynthesis are recruited before the splitting of Aesculus, Acer, and Xanthoceras. These findings provide insight on the evolution of gene clusters associated with medicinal tree metabolites.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Chao Xiong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- School of Life Science and Technology, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Chong Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yaolei Mi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xiaotong Wang
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Caixia Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ziyan Xie
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Peng Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xuehua Xie
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, 150040, Harbin, China.
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| |
Collapse
|
7
|
Zhao L, Oyagbenro R, Feng Y, Xu M, Peters RJ. Oryzalexin S biosynthesis: a cross-stitched disappearing pathway. ABIOTECH 2023; 4:1-7. [PMID: 37220540 PMCID: PMC10199973 DOI: 10.1007/s42994-022-00092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/25/2023]
Abstract
Rice produces many diterpenoid phytoalexins and, reflecting the importance of these natural products in this important cereal crop plant, its genome contains three biosynthetic gene clusters (BGCs) for such metabolism. The chromosome 4 BGC (c4BGC) is largely associated with momilactone production, in part due to the presence of the initiating syn-copalyl diphosphate (CPP) synthase gene (OsCPS4). Oryzalexin S is also derived from syn-CPP. However, the relevant subsequently acting syn-stemarene synthase gene (OsKSL8) is not located in the c4BGC. Production of oryzalexin S further requires hydroxylation at carbons 2 and 19 (C2 and C19), presumably catalyzed by cytochrome P450 (CYP) monooxygenases. Here it is reported the closely related CYP99A2 and CYP99A3, whose genes are also found in the c4BGC catalyze the necessary C19-hydroxylation, while the closely related CYP71Z21 and CYP71Z22, whose genes are found in the recently reported chromosome 7 BGC (c7BGC), catalyze subsequent hydroxylation at C2α. Thus, oryzalexin S biosynthesis utilizes two distinct BGCs, in a pathway cross-stitched together by OsKSL8. Notably, in contrast to the widely conserved c4BGC, the c7BGC is subspecies (ssp.) specific, being prevalent in ssp. japonica and only rarely found in the other major ssp. indica. Moreover, while the closely related syn-stemodene synthase OsKSL11 was originally considered to be distinct from OsKSL8, it has now been reported to be a ssp. indica derived allele at the same genetic loci. Intriguingly, more detailed analysis indicates that OsKSL8(j) is being replaced by OsKSL11 (OsKSL8i), suggesting introgression from ssp. indica to (sub)tropical japonica, with concurrent disappearance of oryzalexin S production. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00092-3.
Collapse
Affiliation(s)
- Le Zhao
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Richard Oyagbenro
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Yiling Feng
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
8
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
9
|
Valletta A, Iozia LM, Fattorini L, Leonelli F. Rice Phytoalexins: Half a Century of Amazing Discoveries; Part I: Distribution, Biosynthesis, Chemical Synthesis, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:260. [PMID: 36678973 PMCID: PMC9862927 DOI: 10.3390/plants12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cultivated rice is a staple food for more than half of the world's population, providing approximately 20% of the world's food energy needs. A broad spectrum of pathogenic microorganisms causes rice diseases leading to huge yield losses worldwide. Wild and cultivated rice species are known to possess a wide variety of antimicrobial secondary metabolites, known as phytoalexins, which are part of their active defense mechanisms. These compounds are biosynthesized transiently by rice in response to pathogens and certain abiotic stresses. Rice phytoalexins have been intensively studied for over half a century, both for their biological role and their potential application in agronomic and pharmaceutical fields. In recent decades, the growing interest of the research community, combined with advances in chemical, biological, and biomolecular investigation methods, has led to a notable acceleration in the growth of knowledge on rice phytoalexins. This review provides an overview of the knowledge gained in recent decades on the diversity, distribution, biosynthesis, chemical synthesis, and bioactivity of rice phytoalexins, with particular attention to the most recent advances in this research field.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|