1
|
Bao X, Zhu Y, Li G, Liu L. Regulation of storage organ formation by long-distance tuberigen signals in potato. HORTICULTURE RESEARCH 2025; 12:uhae360. [PMID: 40070401 PMCID: PMC11894528 DOI: 10.1093/hr/uhae360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025]
Abstract
Potatoes are valued as reliable crops due to their high carbohydrate content and relatively low farming demands. Consequently, significant attention has been directed towards understanding and controlling the life cycle of potato tubers in recent years. Notably, recent studies have identified self-pruning 6A (StSP6A) as a key component of the tuberigen, the mobile signal for tuber formation, produced in leaves and then transported underground to induce tuber formation in potatoes. Recent progress in comprehending the signaling mechanisms that regulate StSP6A by photoperiod and ambient temperature components, its long-distance transport into underground tissue, and its involvement in regulating stolon tuberization has advanced significantly. Consequently, the modulation of StSP6A and other possible tuberigen signals, along with their regulatory pathways, significantly impacts potato domestication and crop yield. This progress highlights the differential regulation of tuberigen signals and their potential functions in promoting tuber formation.
Collapse
Affiliation(s)
- Xinru Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yunke Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Guangcun Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Lu Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
2
|
Mathura SR, Sutton F, Rouse-Miller J, Bowrin V. The molecular coordination of tuberization: Current status and future directions. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102655. [PMID: 39520793 DOI: 10.1016/j.pbi.2024.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The integration of bulk transcriptomic, proteomic, and genomic data generated from numerous systems biology studies of tuberizing plants has resulted in a better understanding of the molecular and morphological aspects of tuberization. The identified conserved integrated hormonal, transcriptional, and metabolic pathways of tuberization in crops from various plant lineages support the hypothesis of a fundamental tuberization process. However, further studies are required to specify the additional processes defined by the genomics and phylogeny of the particular plant lineages, which control the morphological diversity of tubers. This review summarizes the latest molecular and morphological discoveries on the tuberization process in stem tubers and tuberous roots and discusses future trajectories of the field.
Collapse
Affiliation(s)
- Sarah R Mathura
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | | | - Judy Rouse-Miller
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Valerie Bowrin
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
3
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Plunkert ML, Martínez-Gómez J, Madrigal Y, Hernández AI, Tribble CM. Tuber, or not tuber: Molecular and morphological basis of underground storage organ development. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102544. [PMID: 38759482 DOI: 10.1016/j.pbi.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.
Collapse
Affiliation(s)
- Madison L Plunkert
- Department of Plant Biology, Michigan State University, East Lansing, USA; Plant Resilience Institute, Michigan State University, East Lansing, USA.
| | - Jesús Martínez-Gómez
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - Carrie M Tribble
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, USA
| |
Collapse
|
5
|
Sun X, Wang E, Yu L, Liu S, Liu T, Qin J, Jiang P, He S, Cai X, Jing S, Song B. TCP transcription factor StAST1 represses potato tuberization by regulating tuberigen complex activity. PLANT PHYSIOLOGY 2024; 195:1347-1364. [PMID: 38488068 DOI: 10.1093/plphys/kiae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 06/02/2024]
Abstract
Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.
Collapse
Affiliation(s)
- Xiaomeng Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Enshuang Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tiantian Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jun Qin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peng Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuangshuang He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shenglin Jing
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
6
|
Zhang M, Jian H, Shang L, Wang K, Wen S, Li Z, Liu R, Jia L, Huang Z, Lyu D. Transcriptome Analysis Reveals Novel Genes Potentially Involved in Tuberization in Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:795. [PMID: 38592791 PMCID: PMC10975680 DOI: 10.3390/plants13060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
The formation and development of tubers, the primary edible and economic organ of potatoes, directly affect their yield and quality. The regulatory network and mechanism of tuberization have been preliminarily revealed in recent years, but plenty of relevant genes remain to be discovered. A few candidate genes were provided due to the simplicity of sampling and result analysis of previous transcriptomes related to tuberization. We sequenced and thoroughly analyzed the transcriptomes of thirteen tissues from potato plants at the tuber proliferation phase to provide more reference information and gene resources. Among them, eight tissues were stolons and tubers at different developmental stages, which we focused on. Five critical periods of tuberization were selected to perform an analysis of differentially expressed genes (DEGs), according to the results of the tissue correlation. Compared with the unswollen stolons (Sto), 2751, 4897, 6635, and 9700 DEGs were detected in the slightly swollen stolons (Sto1), swollen stolons (Sto2), tubers of proliferation stage 1 (Tu1), and tubers of proliferation stage 4 (Tu4). A total of 854 transcription factors and 164 hormone pathway genes were identified in the DEGs. Furthermore, three co-expression networks associated with Sto-Sto1, Sto2-Tu1, and tubers of proliferation stages two to five (Tu2-Tu5) were built using the weighted gene co-expression network analysis (WGCNA). Thirty hub genes (HGs) and 30 hub transcription factors (HTFs) were screened and focalized in these networks. We found that five HGs were reported to regulate tuberization, and most of the remaining HGs and HTFs co-expressed with them. The orthologs of these HGs and HTFs were reported to regulate processes (e.g., flowering, cell division, hormone synthesis, metabolism and signal transduction, sucrose transport, and starch synthesis) that were also required for tuberization. Such results further support their potential to control tuberization. Our study provides insights and countless candidate genes of the regulatory network of tuberization, laying the foundation for further elucidating the genetic basis of tuber development.
Collapse
Affiliation(s)
- Meihua Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing 400715, China
| | - Lina Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ke Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Zihan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Rongrong Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lijun Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Zhenlin Huang
- Chongqing Agricultural Technical Extension Station, Chongqing 401121, China;
| | - Dianqiu Lyu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Wu S, Gao Y, Zhang Q, Liu F, Hu W. Application of Multi-Omics Technologies to the Study of Phytochromes in Plants. Antioxidants (Basel) 2024; 13:99. [PMID: 38247523 PMCID: PMC10812741 DOI: 10.3390/antiox13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
Collapse
Affiliation(s)
- Shumei Wu
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Yue Gao
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Qi Zhang
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|