1
|
Jiu S, Manzoor MA, Lv Z, Chen B, Shen S, Xu Y, Liu M, Li C, Liu X, Fu Y, Zhang Q, Liu R, Zhang X, Wang S, Song X, Dong Y, Zhang C. New insights into genome assembly at the chromosome-level of Prunus tomentosa in evolution and cold tolerance. IMETA 2025; 4:e70016. [PMID: 40236775 PMCID: PMC11995182 DOI: 10.1002/imt2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/17/2025]
Abstract
This study assembled a high-quality chromosome-level genome of Prunus tomentosa, offering a vital resource for elucidating its genetic architecture, evolutionary relationships, and facilitating genome-assisted breeding efforts. Multi-omics integration revealed PtIMP3 and PtMIOX1L as key factors in cold tolerance of P. tomentosa. PtIMP3 drives the conversion of glucose-6-phosphate to myo-inositol, while PtMIOX1L catalyzes myo-inositol to d-glucuronic acid. Specifically, the high expression abundance of PtIMP3 and low expression abundance of PtMIOX1L resulted in high endogenous inositol levels in P. tomentosa. The application of myo-inositol enhanced the cold tolerance of cherry rootstocks by modulating reactive oxygen species concentrations and maintaining a stable relative water content. This finding supports the superior performance of P. tomentosa in adapting to extreme low-temperatures environmental conditions. These insights advance strategies for improving cold tolerance in horticultural crops, bridging fundamental research with practical applications in developing climate-resilient crops.
Collapse
Affiliation(s)
- Songtao Jiu
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Baozheng Chen
- Province Key Laboratory, Biological Big Data CollegeYunnan Agricultural UniversityKunmingP. R. China
| | - Shaoqin Shen
- College of Life SciencesNorth China University of Science and TechnologyTangshanP. R. China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Moyang Liu
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Chengwei Li
- Department of Molecular, Cellular & Developmental Biology, College of Arts and SciencesUniversity of Colorado BoulderBoulderColoradoUSA
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Yanhong Fu
- College of Life SciencesNorth China University of Science and TechnologyTangshanP. R. China
| | - Qijing Zhang
- Liaoning Institute of Pomology, Liaoning Academy of Agricultural SciencesYingkouP. R. China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xinyu Zhang
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xiaoming Song
- College of Life SciencesNorth China University of Science and TechnologyTangshanP. R. China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data CollegeYunnan Agricultural UniversityKunmingP. R. China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
| |
Collapse
|
2
|
Tan W, Zhou P, Huang X, Wang Z, Liao R, Hayat F, Wang X, Ni Z, Shi T, Yu X, Zhang H, Gao F, Bai Y, Coulibaly D, Omondi OK, Gao Z. Novel insight of the SVP gene involved in pedicel length based on genomics analysis in cherry. PLANT CELL REPORTS 2025; 44:50. [PMID: 39907812 DOI: 10.1007/s00299-025-03439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
KEY MESSAGE PcSVP was identified based on Prunus conradinae genome and was further overexpressed in A. thaliana to comfirm it was a key factor in flower development, causing the pedicels elongation. Prunus conradinae is an endemic plant resource in China with high ornamental and economic values. To generate useful genomic resources for expanding insights into the evolutionary history of this important plant, the chromosome-level genome and organelle genomes of P. conradinae are de novo assembled and functionally annotated. The chromosome-level haploid genome of autotetraploid P. conradinae was assembled with 262.79 Mb with 27,802 protein-coding genes annotated. The complete chloroplast and mitochondrial genome of P. conradinae are found to be 157,715 bp and 434,334 bp, respectively. According to evolutionary analysis, P. conradinae was closely related to P. serrulata and P. yedoensis, and they diverged from their common ancestor approximately 6.0 million years ago. There were 108 gene families that significantly expanded during P. conradinae evolution and 56 shared positively selected genes. Selective sweep analysis based on the whole-genome resequencing of wild cherries from Fujian and Zhejiang indicated that genes involved in flower development and stress responses were potentially under selection. Pedicel length varied greatly among Prunus species and was a significant identifying characteristic. Ectopic overexpression of PcSVP in Arabidopsis thaliana suggested that it was a key factor in flower development, causing the sepals curling and pedicels elongation. These findings will contribute to the discovery of key functional genes involved in the agronomic or biological traits of P. conradinae, as well as the future development, utilisation and germplasm conservation of wild cherries.
Collapse
Affiliation(s)
- Wei Tan
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
| | - Pengyu Zhou
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
| | - Xiao Huang
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
| | - Zefu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruyu Liao
- Institute of Fruit, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Faisal Hayat
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaoan Wang
- Institute of Fruit, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
| | - Ting Shi
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
| | - Huiqin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Feng Gao
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
| | - Yang Bai
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
| | - Daouda Coulibaly
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
- Department of Agricultural Sciences and Techniques-Horticulture, Rural Polytechnic Institute for Training and Applied Research (IPR/IFRA) of Katibougou, Koulikoro, B.P.224, Mali
| | - Ouma Kenneth Omondi
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China
- Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, P.O. Box 536, Egerton, 20115, Kenya
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Xuanwu District, No. 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
3
|
Jiang D, Li Y, Zhuge F, Zhou Q, Zong W, Liu X, Shen X. The telomere-to-telomere genome of flowering cherry (Prunus campanulata) reveals genomic evolution of the subgenus Cerasus. Gigascience 2025; 14:giaf009. [PMID: 39982852 PMCID: PMC11843098 DOI: 10.1093/gigascience/giaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Prunus campanulata, a species of ornamental cherry, holds significant genetic and horticultural value. Despite the availability of various cherry genomes, a fully resolved telomere-to-telomere (T2T) assembly for this species has been lacking. Recent advancements in long-read sequencing technologies have made it possible to generate gap-free genome assemblies, providing comprehensive insights into genomic structures that were previously inaccessible. FINDINGS We present the first T2T genome assembly for P. campanulata "Lianmeiren" (v2.0), achieved through the integration of PacBio HiFi, ultra-long Oxford Nanopore Technologies, Illumina, and Hi-C sequencing. The assembly resulted in a highly contiguous genome with a total size of 266.23 Mb and a contig N50 of 31.6 Mb. The genome exhibits remarkable completeness (98.9% BUSCO) and high accuracy (quality value of 48.75). Additionally, 13 telomeres and putative centromere regions were successfully identified across the 8 pseudochromosomes. Comparative analysis with the previous v1.0 assembly revealed 336,943 single nucleotide polymorphisms, 107,521 indels, and 1,413 structural variations, along with the annotation of 1,402 new genes. CONCLUSIONS This T2T genome assembly of P. campanulata "Lianmeiren" provides a critical reference for understanding the genetic architecture of the species. It enhances our ability to study structural variations, gene function, and evolutionary biology within the Prunus genus.
Collapse
Affiliation(s)
- Dongyue Jiang
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yingang Li
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Fei Zhuge
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Qi Zhou
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Wenjin Zong
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xinhong Liu
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xin Shen
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| |
Collapse
|
4
|
Song Y, Wang J, Zhu J, Shang W, Jia W, Sun Y, He S, Yang X, Wang Z. Functional Analysis of the PoSERK-Interacting Protein PorbcL in the Embryogenic Callus Formation of Tree Peony ( Paeonia ostii T. Hong et J. X. Zhang). PLANTS (BASEL, SWITZERLAND) 2024; 13:2697. [PMID: 39409567 PMCID: PMC11479246 DOI: 10.3390/plants13192697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
SERK is a marker gene for early somatic embryogenesis. We screened and functionally verified a SERK-interacting protein to gain insights into tree-peony somatic embryogenesis. Using PoSERK as bait, we identified PorbcL (i.e., the large subunit of Rubisco) as a SERK-interacting protein from a yeast two-hybrid (Y2H) library of cDNA from developing tree-peony somatic embryos. The interaction between PorbcL and PoSERK was verified by Y2H and bimolecular fluorescence complementation analyses. PorbcL encodes a 586-amino-acid acidic non-secreted hydrophobic non-transmembrane protein that is mainly localized in the chloroplast and plasma membrane. PorbcL was highly expressed in tree-peony roots and flowers and was up-regulated during zygotic embryo development. PorbcL overexpression caused the up-regulation of PoSERK (encoding somatic embryogenesis receptor-like kinase), PoAGL15 (encoding agamous-like 15), and PoGPT1 (encoding glucose-6-phosphate translocator), while it caused the down-regulation of PoLEC1 (encoding leafy cotyledon 1) in tree-peony callus. PorbcL overexpression led to increased indole-3-acetic acid (IAA) content but decreasing contents of abscisic acid (ABA) and 6-benzyladenosine (BAPR). The changes in gene expression, high IAA levels, and increased ratio of IAA to ABA, BAPR, 1-Aminocyclopropanecarboxylic acid (ACC), 5-Deoxystrigol (5DS), and brassinolide (BL) promoted embryogenesis. These results provide a foundation for establishing a tree-peony embryogenic callus system.
Collapse
Affiliation(s)
- Yinglong Song
- Postdoctoral Innovation Practice Base, Henan Institute of Science and Technology, Xinxiang 453003, China;
- Postdoctoral Workstation, Henan Bainong Seed Industry Co., Ltd., Xinxiang 453003, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Jiale Zhu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Wenqing Jia
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Yuke Sun
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Songlin He
- Postdoctoral Innovation Practice Base, Henan Institute of Science and Technology, Xinxiang 453003, China;
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Xitian Yang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| |
Collapse
|
5
|
Jiu S, Lv Z, Liu M, Xu Y, Chen B, Dong X, Zhang X, Cao J, Manzoor MA, Xia M, Li F, Li H, Chen L, Zhang X, Wang S, Dong Y, Zhang C. Haplotype-resolved genome assembly for tetraploid Chinese cherry ( Prunus pseudocerasus) offers insights into fruit firmness. HORTICULTURE RESEARCH 2024; 11:uhae142. [PMID: 38988622 PMCID: PMC11233885 DOI: 10.1093/hr/uhae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/11/2024] [Indexed: 07/12/2024]
Abstract
Chinese cherry (Prunus pseudocerasus) holds considerable importance as one of the primary stone fruit crops in China. However, artificially improving its traits and genetic analysis are challenging due to lack of high-quality genomic resources, which mainly result from difficulties associated with resolving its tetraploid and highly heterozygous genome. Herein, we assembled a chromosome-level, haplotype-resolved genome of the cultivar 'Zhuji Duanbing', comprising 993.69 Mb assembled into 32 pseudochromosomes using PacBio HiFi, Oxford Nanopore, and Hi-C. Intra-haplotype comparative analyses revealed extensive intra-genomic sequence and expression consistency. Phylogenetic and comparative genomic analyses demonstrated that P. pseudocerasus was a stable autotetraploid species, closely related to wild P. pusilliflora, with the two diverging ~18.34 million years ago. Similar to other Prunus species, P. pseudocerasus underwent a common whole-genome duplication event that occurred ~139.96 million years ago. Because of its low fruit firmness, P. pseudocerasus is unsuitable for long-distance transportation, thereby restricting its rapid development throughout China. At the ripe fruit stage, P. pseudocerasus cv. 'Zhuji Duanbing' was significantly less firm than P. avium cv. 'Heizhenzhu'. The difference in firmness is attributed to the degree of alteration in pectin, cellulose, and hemicellulose contents. In addition, comparative transcriptomic analyses identified GalAK-like and Stv1, two genes involved in pectin biosynthesis, which potentially caused the difference in firmness between 'Zhuji Duanbing' and 'Heizhenzhu'. Transient transformations of PpsGalAK-like and PpsStv1 increase protopectin content and thereby enhance fruit firmness. Our study lays a solid foundation for functional genomic studies and the enhancement of important horticultural traits in Chinese cherries.
Collapse
Affiliation(s)
- Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Moyang Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baozheng Chen
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xiao Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinyu Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingxu Xia
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangdong Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Hongwen Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Lijuan Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Jiu S, Manzoor MA, Chen B, Xu Y, Abdullah M, Zhang X, Lv Z, Zhu J, Cao J, Liu X, Wang J, Liu R, Wang S, Dong Y, Zhang C. Chromosome-level genome assembly provides insights into the genetic diversity, evolution, and flower development of Prunus conradinae. MOLECULAR HORTICULTURE 2024; 4:25. [PMID: 38898491 PMCID: PMC11186256 DOI: 10.1186/s43897-024-00101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Prunus conradinae, a valuable flowering cherry belonging to the Rosaceae family subgenus Cerasus and endemic to China, has high economic and ornamental value. However, a high-quality P. conradinae genome is unavailable, which hinders our understanding of its genetic relationships and phylogenesis, and ultimately, the possibility of mining of key genes for important traits. Herein, we have successfully assembled a chromosome-scale P. conradinae genome, identifying 31,134 protein-coding genes, with 98.22% of them functionally annotated. Furthermore, we determined that repetitive sequences constitute 46.23% of the genome. Structural variation detection revealed some syntenic regions, inversions, translocations, and duplications, highlighting the genetic diversity and complexity of Cerasus. Phylogenetic analysis demonstrated that P. conradinae is most closely related to P. campanulata, from which it diverged ~ 19.1 million years ago (Mya). P. avium diverged earlier than P. cerasus and P. conradinae. Similar to the other Prunus species, P. conradinae underwent a common whole-genome duplication event at ~ 138.60 Mya. Furthermore, 79 MADS-box members were identified in P. conradinae, accompanied by the expansion of the SHORT VEGETATIVE PHASE subfamily. Our findings shed light on the complex genetic relationships, and genome evolution of P. conradinae and will facilitate research on the molecular breeding and functions of key genes related to important horticultural and economic characteristics of subgenus Cerasus.
Collapse
Affiliation(s)
- Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Baozheng Chen
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jijun Zhu
- Shanghai Botanical Garden, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Luo J, Wang Y, Li Z, Wang Z, Cao X, Wang N. Haplotype-resolved genome assembly of poplar line NL895 provides a valuable tree genomic resource. FORESTRY RESEARCH 2024; 4:e015. [PMID: 39524422 PMCID: PMC11524272 DOI: 10.48130/forres-0024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 04/07/2024] [Indexed: 11/16/2024]
Abstract
Poplar line NL895 can potentially become a model plant for poplar study as it is a widely cultivated elite line. However, the lack of genome resources hindered the use of NL895 as the major plant material in poplar. In this study, we provided a high-quality genome assembly for poplar line NL895 with PacBio single molecule real-time (SMRT) sequencing and High-throughput chromosome conformation capture (Hi-C) technology. The raw assembly of NL895 for the diploid genome included 606 contigs with a total size of ~815 Mb, and the monoploid genome included 246 contigs with a total size of ~412 Mb. The haplotype-resolved chromosomes in the diploid genomes were also generated. All the monoploid, diploid, and haplotype-resolved genomes showed more than 97% completeness and they can largely improve the mapping efficiency in RNA-Seq analysis. By comprehensively comparing the two haplotype genomes we found the heterozygosity of NL895 is much higher than other poplar lines. We also found that NL895 harbors more genomic variants and more gene diversity. The haplotype-specific genes showed higher variable gene expression patterns. These characters would be attributed to the high heterosis of poplar line NL895. The allele-specific expression (ASE) was also investigated and lots of alleles showed biased expressions in different tissues or environmental conditions. Taken together, the genome sequence for NL895 is a valuable tree genomic resource and it would greatly facilitate studies in poplar.
Collapse
Affiliation(s)
- Jie Luo
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihui Li
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziwei Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212013, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Sericultural Research Institute, Zhenjiang 212013, Jiangsu, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Gao Y, Lei Z, Huang J, Sun Y, Liu S, Yao L, Liu J, Liu W, Liu Y, Chen Y. Characterization of Key Odorants in Lushan Yunwu Tea in Response to Intercropping with Flowering Cherry. Foods 2024; 13:1252. [PMID: 38672924 PMCID: PMC11049266 DOI: 10.3390/foods13081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Lushan Yunwu tea (LSYWT) is a famous green tea in China. However, the effects of intercropping tea with flowering cherry on the overall aroma of tea have not been well understood. In this study, headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used for analysis. A total of 54 volatile compounds from eight chemical classes were identified in tea samples from both the intercropping and pure-tea-plantation groups. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and odor activity value (OAV) methods combined with sensory evaluation identified cis-jasmone, nonanal, and linalool as the key aroma compounds in the intercropping group. Benzaldehyde, α-farnesene, and methyl benzene were identified as the main volatile compounds in the flowering cherry using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). These findings will enrich the research on tea aroma chemistry and offer new insights into the product development and quality improvement of LSYWT.
Collapse
Affiliation(s)
- Yinxiang Gao
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Zhiyong Lei
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Jigang Huang
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Yongming Sun
- Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 330046, China
| | - Shuang Liu
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Liping Yao
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Jiaxin Liu
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Wenxin Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Yanan Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Yan Chen
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| |
Collapse
|
9
|
Su P, Wang D, Wang P, Gao Y, Jia H, Hou J, Wu L. In vitro regeneration, photomorphogenesis and light signaling gene expression in Hydrangea quercifolia cv. 'Harmony' under different LED environments. PLANTA 2024; 259:71. [PMID: 38353793 DOI: 10.1007/s00425-024-04335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024]
Abstract
MAIN CONCLUSION Plant growth regulators, sucrose concentration, and light quality significantly impact in vitro regeneration of 'Harmony'. Blue light promotes photomorphogenesis by enhancing light energy utilization, adjusting transcription of light signal genes, and altering hormone levels. Hydrangea quercifolia cv. 'Harmony', celebrated for lush green foliage and clusters of white flowers, has been extensively researched for its regenerative properties. Regeneration in stem segments, leaves, and petioles is facilitated by exogenous auxin and cytokinins (CTKs), with the concentration of sucrose (SC) being a key determinant for shoot regeneration from leaves. The study also highlights the significant impact of light conditions on photomorphogenesis. With an increase in the proportion of red (R) light, there is an inhibitory effect, leading to a reduction in leaf area, a decrease in the quantum yield of PSII (ΦPSII), and an increase in non-photochemical quenching (ΦNPQ) and non-regulated energy dissipation in PSII (ΦNO). Conversely, blue (B) light enhances growth, characterized by an increase in leaf area, elevated ΦPSII, and stable ΦNPQ and ΦNO levels. Additionally, B light induces the upregulation of HqCRYs, HqHY5-like, HqXTH27-like, and HqPHYs genes, along with an increase in endogenous CTKs levels, which positively influence photomorphogenesis independent of HqHY5-like regulation. This light condition also suppresses the synthesis of endogenous gibberellins (GA) and brassinosteroids (BR), further facilitating photomorphogenesis. In essence, B light is fundamental in expediting photomorphogenesis in 'Harmony', demonstrating the vital role in plant growth and development.
Collapse
Affiliation(s)
- Pengfei Su
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Ping Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Yameng Gao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Huiling Jia
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Jinyan Hou
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
- Zhongke Taihe Experimental Station, Taihe, 236626, Anhui, China.
| |
Collapse
|
10
|
Hu Y, Feng C, Wu B, Kang M. A chromosome-scale assembly of the early-flowering Prunus campanulata and comparative genomics of cherries. Sci Data 2023; 10:920. [PMID: 38129445 PMCID: PMC10739980 DOI: 10.1038/s41597-023-02843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Prunus campanulata is an important flowering cherry germplasm of high ornamental value. Given its early-flowering phenotypes, P. campanulata could be used for molecular breeding of ornamental species and fruit crops belonging to the subgenus Cerasus. Here, we report a chromosome-scale assembly of P. campanulata with a genome size of 282.6 Mb and a contig N50 length of 12.04 Mb. The genome contained 24,861 protein-coding genes, of which 24,749 genes (99.5%) were functionally annotated, and 148.20 Mb (52.4%) of the assembled sequences are repetitive sequences. A combination of genomic and population genomic analyses revealed a number of genes under positive selection or accelerated molecular evolution in P. campanulata. Our study provides a reliable genome resource, and lays a solid foundation for genetic improvement of flowering cherry germplasm.
Collapse
Affiliation(s)
- Yuxi Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Feng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Baohuan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ming Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
11
|
Nie C, Xu X, Zhang X, Xia W, Sun H, Li N, Ding Z, Lv Y. Genome-Wide Identified MADS-Box Genes in Prunus campanulata 'Plena' and Theirs Roles in Double-Flower Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3171. [PMID: 37687417 PMCID: PMC10490222 DOI: 10.3390/plants12173171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The MADS-box gene family plays key roles in flower induction, floral initiation, and floral morphogenesis in flowering plants. To understand their functions in the double-flower formation of Prunus campanulata 'Plena' (hereafter referred to as PCP), which is an excellent flowering cherry cultivar, we performed genome-wide identification of the MADS-box gene family. In this study, 71 MADS-box genes were identified and grouped into the Mα, Mβ, Mγ and MIKC subfamilies according to their structures and phylogenetic relationships. All 71 MADS-box genes were located on eight chromosomes of PCP. Analysis of the cis-acting elements in the promoter region of MADS-box genes indicated that they were associated mainly with auxin, abscisic acid, gibberellin, MeJA (methyl jasmonate), and salicylic acid responsiveness, which may be involved in floral development and differentiation. By observing the floral organ phenotype, we found that the double-flower phenotype of PCP originated from petaloid stamens. The analysis of MIKC-type MADS-box genes in PCP vegetative and floral organs by qRT-PCR revealed six upregulated genes involved in petal development and three downregulated genes participating in stamen identity. Comparative analysis of petaloid stamens and normal stamens also indicated that the expression level of the AG gene (PcMADS40) was significantly reduced. Thus, we speculated that these upregulated and downregulated genes, especially PcMADS40, may lead to petaloid stamen formation and thus double flowers. This study lays a theoretical foundation for MADS-box gene identification and classification and studying the molecular mechanism underlying double flowers in other ornamental plants.
Collapse
Affiliation(s)
- Chaoren Nie
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Xiaoguo Xu
- Wuhan Landscape Ecology Group Co., Ltd., Wuhan 430070, China;
| | - Xiaoqin Zhang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Wensheng Xia
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Hongbing Sun
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Na Li
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Zhaoquan Ding
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Yingmin Lv
- School of Landscape Architecture, Beijing Forestry of University, Beijing 100083, China
| |
Collapse
|