1
|
Seif EJM, Junior PIS. In silico bioprospecting of receptors for Oligoventin: An antimicrobial peptide isolated from spider eggs of Phoneutria nigriventer. Colloids Surf B Biointerfaces 2025; 248:114472. [PMID: 39732068 DOI: 10.1016/j.colsurfb.2024.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Irresponsible and wholesale use of antimicrobial agents is the principal cause of the emergence of strains of resistant microorganisms to traditional drugs. Oligoventin is a neutral peptide isolated from spider eggs of Phoneutria nigriventer, with antimicrobial activity against Gram-positive, Gram-negative, and yeast organisms. However, the molecular target and pathways of antimicrobial activity are still unknown. Thus, the aim of the present study is to prospect receptors associated with the antimicrobial activity of Oligoventin using in silico tools. METHODS The PharmMapper and PDB server was used to prospect targets originating from microorganisms. Additionally, the PatchDock server was utilized to perform molecular docking between Oligoventin and the targets. Subsequently, the I-TASSER server was adopted to predict the ligand site. Finally, the docking results and predicted sites were compared with literature sites of each target. RESULTS Over 100 potential receptors for oligoventin have been identified. Among these, enoyl-ACP reductase (Idpdb1LXC) and thymidylate synthase ThyX (Idpdb 1O28) from bacteria and N-acetylglucosamine phosphate mutase (Idpdb 2DKD) showed superior interaction with oligoventin, exhibiting colocalization between docked residues and cofactor/active sites. These enzymes play a crucial role in fatty acid and DNA biosynthesis in prokaryotes and in cell wall synthesis in yeast. CONCLUSION Therefore, in silico results suggest that Oligoventin can impair fatty acid DNA, cell wall synthesis, thereby reducing microbial proliferation and causing microorganism death.
Collapse
Affiliation(s)
- Elias Jorge Muniz Seif
- Postgraduate Program of Molecular Biology, Biophysics and Biochemistry Department, Federal University of São Paulo, São Paulo, SP CEP 04021-001, Brazil; Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling - CeT-ICS/CEPID, Butantan Institute São Paulo, São Paulo, SP CEP 05503-900, Brazil.
| | - Pedro Ismael Silva Junior
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling - CeT-ICS/CEPID, Butantan Institute São Paulo, São Paulo, SP CEP 05503-900, Brazil; Postgraduate Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
3
|
Li J, Zhang L, Li Q, Zhang S, Zhang W, Zhao Y, Zheng X, Fan Z. Hormetic effect of a short-chain PFBS on Microcystis aeruginosa and its molecular mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133596. [PMID: 38325097 DOI: 10.1016/j.jhazmat.2024.133596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Short-chain Perfluorinated compounds (PFCs), used as substitutes for highly toxic long-chain PFCs, are increasingly entering the aquatic environment. However, the toxicity of short-chain PFCs in the environment is still controversial. This study investigated the effects of short-chain perfluorobutanesulfonic acid (PFBS) at different concentrations (2.5, 6, 14.4, 36, and 90 mg/L) on M. aeruginosa growth under 12-day exposure and explored the molecular mechanism of toxicity using transcriptomics. The results showed that M. aeruginosa exhibited hormetic effects after exposure to PFBS. Low PFBS concentrations stimulated algal growth, whereas high PFBS concentrations inhibited it, and this inhibitory effect became progressively more pronounced with increasing PFBS exposure concentrations. Transcriptomics showed that PFBS promoted the pathways of photosynthesis, glycolysis, energy metabolism and peptidoglycan synthesis, providing the energy required for cell growth and maintaining cellular morphology. PFBS, on the other hand, caused growth inhibition in algae mainly through oxidative stress, streptomycin synthesis, and genetic damage. Our findings provide new insights into the toxicity and underlying mechanism of short-chain PFCs on algae and inform the understanding of the hormetic effect of short-chain PFCs, which are crucial for assessing their ecological risks in aquatic environments.
Collapse
Affiliation(s)
- Jue Li
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China
| | - Liangliang Zhang
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China
| | - Qihui Li
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China
| | - Shun Zhang
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China
| | - Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yuqiang Zhao
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Xiaowei Zheng
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| | - Zhengqiu Fan
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Chen YH, Cheng WH. Hexosamine biosynthesis and related pathways, protein N-glycosylation and O-GlcNAcylation: their interconnection and role in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1349064. [PMID: 38510444 PMCID: PMC10951099 DOI: 10.3389/fpls.2024.1349064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
N-Acetylglucosamine (GlcNAc), a fundamental amino sugar moiety, is essential for protein glycosylation, glycolipid, GPI-anchor protein, and cell wall components. Uridine diphosphate-GlcNAc (UDP-GlcNAc), an active form of GlcNAc, is synthesized through the hexosamine biosynthesis pathway (HBP). Although HBP is highly conserved across organisms, the enzymes involved perform subtly distinct functions among microbes, mammals, and plants. A complete block of HBP normally causes lethality in any life form, reflecting the pivotal role of HBP in the normal growth and development of organisms. Although HBP is mainly composed of four biochemical reactions, HBP is exquisitely regulated to maintain the homeostasis of UDP-GlcNAc content. As HBP utilizes substrates including fructose-6-P, glutamine, acetyl-CoA, and UTP, endogenous nutrient/energy metabolites may be integrated to better suit internal growth and development, and external environmental stimuli. Although the genes encoding HBP enzymes are well characterized in microbes and mammals, they were less understood in higher plants in the past. As the HBP-related genes/enzymes have largely been characterized in higher plants in recent years, in this review we update the latest advances in the functions of the HBP-related genes in higher plants. In addition, HBP's salvage pathway and GlcNAc-mediated two major co- or post-translational modifications, N-glycosylation and O-GlcNAcylation, are also included in this review. Further knowledge on the function of HBP and its product conjugates, and the mechanisms underlying their response to deleterious environments might provide an alternative strategy for agricultural biofortification in the future.
Collapse
Affiliation(s)
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Kang SM, Adhikari A, Kwon EH, Gam HJ, Jeon JR, Woo JI, Lee IJ. Influence of N-Acetylglucosamine and Melatonin Interaction in Modeling the Photosynthetic Component and Metabolomics of Cucumber under Salinity Stress. Int J Mol Sci 2024; 25:2844. [PMID: 38474090 DOI: 10.3390/ijms25052844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The application of N-acetylglucosamine (GlcNAc) and melatonin (Mel) in agriculture could be a promising avenue for improving crop resilience and productivity, especially under challenging environmental conditions. In the current study, we treated the cucumber plant with GlcNAc and Mel solely and combinedly under salt stress (150 mM) then studied photosynthetic attributes using the transient OJIP fluorescence method. The results showed that the combination of GlcNAc × Mel significantly improved the plant morphological attributes, such as root and shoot biomass, and also improved chlorophyll and photosynthetic components. The mineral elements such as K, Mg, Ca, and P were significantly elevated, whereas a lower influx of Na was observed in GlcNAc × Mel treated cucumber shoots. A significant reduction in abscisic acid was observed, which was validated by the reduction in proline content and the increase in stomatal conductance (Gs), transpiration rate (E), and substomatal CO2 concentration (Ci). Furthermore, the activities of antioxidants such as polyphenol and flavonoid were considerably improved, resulting in a decrease in SOD and CAT with GlcNAc × Mel treatment. In addition, GlcNAc × Mel treatment dropped levels of the toxic radical Malondialdehyde (MDA) and elevated amino acids in cucumber shoots. These findings suggest that the combination of GlcNAc × Mel could be an effective elicitor for modeling plant metabolism to confer stress tolerance in crops.
Collapse
Affiliation(s)
- Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin Ryeol Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-In Woo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Zhang Z, Zhong Z, Xiong Y. Sailing in complex nutrient signaling networks: Where I am, where to go, and how to go? MOLECULAR PLANT 2023; 16:1635-1660. [PMID: 37740490 DOI: 10.1016/j.molp.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
To ensure survival and promote growth, sessile plants have developed intricate internal signaling networks tailored in diverse cells and organs with both shared and specialized functions that respond to various internal and external cues. A fascinating question arises: how can a plant cell or organ diagnose the spatial and temporal information it is experiencing to know "where I am," and then is able to make the accurate specific responses to decide "where to go" and "how to go," despite the absence of neuronal systems found in mammals. Drawing inspiration from recent comprehensive investigations into diverse nutrient signaling pathways in plants, this review focuses on the interactive nutrient signaling networks mediated by various nutrient sensors and transducers. We assess and illustrate examples of how cells and organs exhibit specific responses to changing spatial and temporal information within these interactive plant nutrient networks. In addition, we elucidate the underlying mechanisms by which plants employ posttranslational modification codes to integrate different upstream nutrient signals, thereby conferring response specificities to the signaling hub proteins. Furthermore, we discuss recent breakthrough studies that demonstrate the potential of modulating nutrient sensing and signaling as promising strategies to enhance crop yield, even with reduced fertilizer application.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|