1
|
Karakas E, Bulut M, Fernie A. Metabolome guided treasure hunt - learning from metabolic diversity. JOURNAL OF PLANT PHYSIOLOGY 2025; 309:154494. [PMID: 40288107 DOI: 10.1016/j.jplph.2025.154494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Metabolomics is a rapidly evolving field focused on the comprehensive identification and quantification of small molecules in biological systems. As the final layer of the biological hierarchy following of the genome, transcriptome and proteome, it presents a dynamic snapshot of phenotype, influenced by genetic, environmental and physiological factors. Whilst the metabolome sits downstream of genes and proteins, there are multiple higher levels-tissues, organs, the entire organism, and interactions with other organisms, which need to be considered in order to fully comprehend organismal biology. Advances in metabolomics continue to expand its applications in plant biology, biotechnology, and natural product discovery unlocking many of nature's most beneficial colors, tastes, nutrients and medicines. Flavonoids and other specialized metabolites are essential for plant defense against oxidative stress and function as key phytonutrients for human health. Recent advancements in gene-editing and metabolic engineering have significantly improved the nutritional value and flavor of crop plants. Here we highlight how advanced metabolic analysis is driving improvements in crops uncovering genes that influence nutrient and flavor profile and plant derived compounds with medicinal potential.
Collapse
Affiliation(s)
- Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, Golm, 14476, Potsdam, Germany
| | - Mustafa Bulut
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, Golm, 14476, Potsdam, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, Golm, 14476, Potsdam, Germany.
| |
Collapse
|
2
|
Fernie AR, Martinez-Rivas F. Br(e)aking the tomato fruit size-sweetness trade-off. TRENDS IN PLANT SCIENCE 2025; 30:350-351. [PMID: 39809655 DOI: 10.1016/j.tplants.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
The study by Zhang et al. demonstrated that two kinases (SlCDPK27 and SlCDPK26) regulate the sugar content in tomato fruits with little impact on morphology. They act as sugar breaks by phosphorylating a sucrose synthase, promoting its degradation and unveiling the mechanism by which sugar content can be increased without yield penalty.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Felix Martinez-Rivas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| |
Collapse
|
3
|
Tzuri G, Dafna A, Itzhaki B, Halperin I, Oren E, Isaacson T, Faigenboim A, Yeselson Y, Paris HS, Mazourek M, Burger J, Schaffer AA, Gur A. Meta genetic analysis of melon sweetness. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:68. [PMID: 40067361 PMCID: PMC11897113 DOI: 10.1007/s00122-025-04863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025]
Abstract
KEY MESSAGE Through meta-genetic analysis of Cucumis melo sweetness, we expand the description of the complex genetic architecture of this trait. Integration of extensive new results with published QTL data provides an outline towards construction of a melon sweetness pan-QTLome. An ultimate objective in crop genetics is describing the complete repertoire of genes and alleles that shape the phenotypic variation of a quantitative trait within a species. Flesh sweetness is a primary determinant of fruit quality and consumer acceptance of melons. Cucumis melo is a diverse species that, among other traits, displays extensive variation in total soluble solids (TSS) content in fruit flesh, ranging from 20 Brix in non-sweet to 180 Brix in sweet accessions. We present here meta-genetic analysis of TSS and sugar variation in melon, using six different populations and fruit measurements collected from more than 30,000 open-field and greenhouse-grown plants, integrated with 15 published melon sweetness-related quantitative trait loci (QTL) studies. Starting with characterization of sugar composition variation across 180 diverse accessions that represent 3 subspecies and 12 of their cultivar-groups, we mapped TSS and sugar QTLs, and confirmed that sucrose accumulation is the key variable explaining TSS variation. All modes-of-inheritance for TSS were displayed by multi-season analysis of a broad half-diallel population derived from 20 diverse founders, with significant prevalence of the additive component. Through parallel genetic mapping in four advanced bi-parental populations, we identified common as well as unique TSS QTLs in 12 chromosomal regions. We demonstrate the cumulative less-than-additive nature of favorable TSS QTL alleles and the potential of a QTL-stacking approach. Using our broad dataset, we were additionally able to show that TSS variation displays weak genetic correlations with melon fruit size and ripening behavior, supporting effective breeding for sweetness per se. Our integrated analysis, combined with additional layers of published QTL data, broadens the perspective on the complex genetic landscape of melon sweetness and proposes a scheme towards future construction of a crop community-driven melon sweetness pan-QTLome.
Collapse
Affiliation(s)
- Galil Tzuri
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Asaf Dafna
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Ben Itzhaki
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Ilan Halperin
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Elad Oren
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Tal Isaacson
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Adi Faigenboim
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7507101, Rishon LeZiyyon, Israel
| | - Yelena Yeselson
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7507101, Rishon LeZiyyon, Israel
| | - Harry S Paris
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Michael Mazourek
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7507101, Rishon LeZiyyon, Israel
| | - Amit Gur
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel.
| |
Collapse
|
4
|
Wijesingha Ahchige M, Fisher J, Sokolowska E, Lyall R, Illing N, Skirycz A, Zamir D, Alseekh S, Fernie AR. The variegated canalized-1 tomato mutant is linked to photosystem assembly. Comput Struct Biotechnol J 2024; 23:3967-3988. [PMID: 39582891 PMCID: PMC11584773 DOI: 10.1016/j.csbj.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
The recently described canal-1 tomato mutant, which has a variegated leaf phenotype, has been shown to affect canalization of yield. The corresponding protein is orthologous to AtSCO2 -SNOWY COTYLEDON 2, which has suggested roles in thylakoid biogenesis. Here we characterize the canal-1 mutant through a multi-omics approach, by comparing mutant to wild-type tissues. While white canal-1 leaves are devoid of chlorophyll, green leaves of the mutant appear wild-type-like, despite an impaired protein function. Transcriptomic data suggest that green mutant leaves compensate for this impaired protein function by upregulation of transcription of photosystem assembly and photosystem component genes, thereby allowing adequate photosystem establishment, which is reflected in their wild-type-like proteome. White canal-1 leaves, however, likely fail to reach a certain threshold enabling this overcompensation, and plastids get trapped in an undeveloped state, while additionally suffering from high light stress, indicated by the overexpression of ELIP homolog genes. The metabolic profile of white and to a lesser degree also green tissues revealed upregulation of amino acid levels, that was at least partially mediated by transcriptional and proteomic upregulation. These combined changes are indicative of a stress response and suggest that white tissues behave as carbon sinks. In summary, our work demonstrates the relevance of the SCO2 protein in both photosystem assembly and as a consequence in the canalization of yield.
Collapse
Affiliation(s)
- Micha Wijesingha Ahchige
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Josef Fisher
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Ewelina Sokolowska
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Rafe Lyall
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Aleksandra Skirycz
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dani Zamir
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Saleh Alseekh
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Zhang J, Lyu H, Chen J, Cao X, Du R, Ma L, Wang N, Zhu Z, Rao J, Wang J, Zhong K, Lyu Y, Wang Y, Lin T, Zhou Y, Zhou Y, Zhu G, Fei Z, Klee H, Huang S. Releasing a sugar brake generates sweeter tomato without yield penalty. Nature 2024; 635:647-656. [PMID: 39537922 PMCID: PMC11578880 DOI: 10.1038/s41586-024-08186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
In tomato, sugar content is highly correlated with consumer preferences, with most consumers preferring sweeter fruit1-4. However, the sugar content of commercial varieties is generally low, as it is inversely correlated with fruit size, and growers prioritize yield over flavour quality5-7. Here we identified two genes, tomato (Solanum lycopersicum) calcium-dependent protein kinase 27 (SlCDPK27; also known as SlCPK27) and its paralogue SlCDPK26, that control fruit sugar content. They act as sugar brakes by phosphorylating a sucrose synthase, which promotes degradation of the sucrose synthase. Gene-edited SlCDPK27 and SlCDPK26 knockouts increased glucose and fructose contents by up to 30%, enhancing perceived sweetness without fruit weight or yield penalty. Although there are fewer, lighter seeds in the mutants, they exhibit normal germination. Together, these findings provide insight into the regulatory mechanisms controlling fruit sugar accumulation in tomato and offer opportunities to increase sugar content in large-fruited cultivars without sacrificing size and yield.
Collapse
Affiliation(s)
- Jinzhe Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Lyu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jie Chen
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xue Cao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Du
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiguo Zhu
- School of Life Sciences, Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Southwest United Graduate School, Kunming, China
| | - Jianglei Rao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Zhong
- Agriculture and Food Standardization Institute, China National Institute of Standardization, Beijing, China
| | - Yaqing Lyu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanling Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yao Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guangtao Zhu
- School of Life Sciences, Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Southwest United Graduate School, Kunming, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Harry Klee
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
6
|
Martínez-Rivas FJ, Fernie AR. Metabolomics to understand metabolic regulation underpinning fruit ripening, development, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1726-1740. [PMID: 37864494 PMCID: PMC10938048 DOI: 10.1093/jxb/erad384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Classically fruit ripening and development was studied using genetic approaches, with understanding of metabolic changes that occurred in concert largely focused on a handful of metabolites including sugars, organic acids, cell wall components, and phytohormones. The advent and widespread application of metabolomics has, however, led to far greater understanding of metabolic components that play a crucial role not only in this process but also in influencing the organoleptic and nutritive properties of the fruits. Here we review how the study of natural variation, mutants, transgenics, and gene-edited fruits has led to a considerable increase in our understanding of these aspects. We focus on fleshy fruits such as tomato but also review berries, receptacle fruits, and stone-bearing fruits. Finally, we offer a perspective as to how comparative analyses and machine learning will likely further improve our comprehension of the functional importance of various metabolites in the future.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
7
|
Fernie AR, Yan J, Aharoni A, Ma J. Editorial: The past, present and future of The Plant Journal Resource Articles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:967-973. [PMID: 37943112 DOI: 10.1111/tpj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetics, Huazhong Agricultural District, Wuhan, China
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jianxian Ma
- Purdue University, 915 S. University St, West Lafayette, IN, USA
| |
Collapse
|