1
|
Rauch-Wirth L, Schütz D, Groß R, Rode S, Glocker B, Müller JA, Walther P, Read C, Münch J. Transduction enhancing EF-C peptide nanofibrils are endocytosed by macropinocytosis and subsequently degraded. Biomaterials 2025; 317:123044. [PMID: 39754968 DOI: 10.1016/j.biomaterials.2024.123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers. Among these, PNFs derived from the 12-mer peptide EF-C are well-investigated and commercially available. EF-C PNFs enhance transduction by forming EF-C PNFs/virus complexes that overcome electrostatic repulsion through their polycationic surface and interaction with cellular protrusions. However, the safe application of PNFs as transduction enhancers in gene therapeutic applications requires a fundamental understanding of their transduction-enhancing mechanisms, uptake, and degradation. In this study, we demonstrate that EF-C PNFs induce plasma membrane invaginations, increasing the membrane surface for viral attachment and reducing the distance to the nuclear membrane, thereby facilitating viral entry and transport to the nucleus. Furthermore, we identified macropinocytosis as the main entry pathway for EF-C PNFs and their subsequent degradation by lysosomal peptidases. The lysosomal degradation of EF-C PNFs prevents their accumulation as amyloid deposits, mitigating potential side effects and supporting their safe use in clinical applications.
Collapse
Affiliation(s)
- Lena Rauch-Wirth
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany
| | - Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany
| | - Sascha Rode
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany
| | - Bernhard Glocker
- Central Facility for Electron Microscopy, Ulm University, Ulm, 89081, Germany; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany; Institute of Virology, Philipps University Marburg, Marburg, 35043, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, 89081, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm, 89081, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany.
| |
Collapse
|
2
|
Bayati A, McPherson PS. Alpha-synuclein, autophagy-lysosomal pathway, and Lewy bodies: Mutations, propagation, aggregation, and the formation of inclusions. J Biol Chem 2024; 300:107742. [PMID: 39233232 PMCID: PMC11460475 DOI: 10.1016/j.jbc.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Research into the pathophysiology of Parkinson's disease (PD) is a fast-paced pursuit, with new findings about PD and other synucleinopathies being made each year. The involvement of various lysosomal proteins, such as TFEB, TMEM175, GBA, and LAMP1/2, marks the rising awareness about the importance of lysosomes in PD and other neurodegenerative disorders. This, along with recent developments regarding the involvement of microglia and the immune system in neurodegenerative diseases, has brought about a new era in neurodegeneration: the role of proinflammatory cytokines on the nervous system, and their downstream effects on mitochondria, lysosomal degradation, and autophagy. More effort is needed to understand the interplay between neuroimmunology and disease mechanisms, as many of the mechanisms remain enigmatic. α-synuclein, a key protein in PD and the main component of Lewy bodies, sits at the nexus between lysosomal degradation, autophagy, cellular stress, neuroimmunology, PD pathophysiology, and disease progression. This review revisits some fundamental knowledge about PD while capturing some of the latest trends in PD research, specifically as it relates to α-synuclein.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Kon T, Lee S, Martinez-Valbuena I, Yoshida K, Tanikawa S, Lang AE, Kovacs GG. Molecular Behavior of α-Synuclein Is Associated with Membrane Transport, Lipid Metabolism, and Ubiquitin-Proteasome Pathways in Lewy Body Disease. Int J Mol Sci 2024; 25:2676. [PMID: 38473923 DOI: 10.3390/ijms25052676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Lewy body diseases (LBDs) feature α-synuclein (α-syn)-containing Lewy bodies, with misfolded α-syn potentially propagating as seeds. Using a seeding amplification assay, we previously reported distinct α-syn seeding in LBD cases based on the area under seeding curves. This study revealed that LBD cases showing different α-syn seeding kinetics have distinct proteomics profiles, emphasizing disruptions in mitochondria and lipid metabolism in high-seeder cases. Though the mechanisms underlying LBD development are intricate, the factors influencing α-syn seeding activity remain elusive. To address this and complement our previous findings, we conducted targeted transcriptome analyses in the substantia nigra using the nanoString nCounter assay together with histopathological evaluations in high (n = 4) and low (n = 3) nigral α-syn seeders. Neuropathological findings (particularly the substantia nigra) were consistent between these groups and were characterized by neocortical LBD associated with Alzheimer's disease neuropathologic change. Among the 1811 genes assessed, we identified the top 20 upregulated and downregulated genes and pathways in α-syn high seeders compared with low seeders. Notably, alterations were observed in genes and pathways related to transmembrane transporters, lipid metabolism, and the ubiquitin-proteasome system in the high α-syn seeders. In conclusion, our findings suggest that the molecular behavior of α-syn is the driving force in the neurodegenerative process affecting the substantia nigra through these identified pathways. These insights highlight their potential as therapeutic targets for attenuating LBD progression.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Neurology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki 036-8562, Japan
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Satoshi Tanikawa
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Edmond J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
- Edmond J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
- Krembil Brain Institute, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
| |
Collapse
|
4
|
Hivare P, Singh U, Mujmer K, Gupta S, Bhatia D. Red emitting fluorescent carbon nanoparticles to track spatio-temporal dynamics of endocytic pathways in model neuroblastoma neurons. NANOSCALE 2023; 15:1154-1171. [PMID: 36413203 DOI: 10.1039/d2nr03800e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
One of the biggest challenges limiting the biological applications of fluorescent carbon-based nanoparticles is their capacity to emit in the red region of the spectrum and simultaneously maintaining the smaller size. These two parameters always go in inverse proportion, thus lagging their applications in biological imaging. Endocytic pathways play important roles in regulating major cellular functions such as cellular differentiation. The Spatio-temporal dynamics of endocytic pathways adopted by various ligands (including nanoparticles) over longer durations in cellular differentiation remain unstudied. Here we have used red-emitting fluorescent carbon nanoparticles to study the endocytic pathways in neuronal cells at different stages of differentiation. These small-sized, bright, red-emitting carbon nanoparticles (CNPs) can be internalized by live cells and imaged for extended periods, thus capturing the Spatio-temporal dynamics of endocytic pathways in model SH-SY5Y derived neuroblastoma neurons. We find that these nanoparticles are preferably taken up via clathrin-mediated endocytosis and follow the classical recycling pathways at all the stages of neuronal differentiation. These nanoparticles hold immense potential for their size, composition, surface and fluorescence tunability, thus maximizing their applications in spatio-temporally tracking multiple cellular pathways in cells and tissues simultaneously.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Udisha Singh
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Kratika Mujmer
- Center for Brain and Cognitive Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sharad Gupta
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|