1
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Hadjesfandiari N, Serrano K, Levin E, Johal P, Feenstra S, Shih AW, Devine DV. Effect of modern infusion pumps on RBC quality. Transfusion 2022; 62:797-808. [PMID: 35213738 DOI: 10.1111/trf.16833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mechanical stress on red blood cells is associated with using infusion pumps for blood administration. Current standards in North America leave it to healthcare facilities to consult with manufacturers about infusion pump safety for transfusion; studies on various pumps and red blood cell (RBC) conditions are scarce. STUDY DESIGN AND METHODS RBC units were pumped through four infusion pumps on d22 (22 days postcollection), d40, d28 after gamma irradiation on d14 (I14d28), and d22 after irradiation on d21 (I21d22). For each experiment, three units were pooled and split among four bags. Samples were collected at gravity and after pumping at clinical nonemergency rates. Hemolysis %, microvesicles, potassium, lactate dehydrogenase, mechanical fragility index levels, and morphology evaluations were performed (n = 5-6). RESULTS Hemolysis levels of Piston and Linear Peristaltic pump samples were not different from hemolysis of corresponding gravity samples. Peristaltic samples had significantly higher hemolysis compared to gravity, and other pumps, however, maximum mean difference was limited to 0.05%. Pumping at 50 mL/h resulted in the highest hemolysis level. Change in hemolysis % due to pumping was significantly higher in d40 and I21d22 units. No combination of pumps and RBCs conditions led to hemolysis >0.8%. Besides hemolysis, lactate dehydrogenase release was the only marker that demonstrated some differences between infusions via pump versus gravity. CONCLUSION The pump design affects the degree of hemolysis. However, for all tested pumps and RBC conditions, this increase was minimal. Hemolysis measurement on d40 and I21d22 at 50 mL/h were concluded to be appropriate parameters for pump evaluation.
Collapse
Affiliation(s)
- Narges Hadjesfandiari
- Centre for Innovation, Canadian Blood Services, 4450-2350 Health Sciences Mall, Vancouver, British ColumbiaV6T 1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Serrano
- Centre for Innovation, Canadian Blood Services, 4450-2350 Health Sciences Mall, Vancouver, British ColumbiaV6T 1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena Levin
- Centre for Innovation, Canadian Blood Services, 4450-2350 Health Sciences Mall, Vancouver, British ColumbiaV6T 1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Parveen Johal
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelley Feenstra
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| | - Andrew W Shih
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Centre for Innovation, Canadian Blood Services, 4450-2350 Health Sciences Mall, Vancouver, British ColumbiaV6T 1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Kim J, Nguyen TTT, Li Y, Zhang CO, Cha B, Ke Y, Mazzeffi MA, Tanaka KA, Birukova AA, Birukov KG. Contrasting effects of stored allogeneic red blood cells and their supernatants on permeability and inflammatory responses in human pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L533-L548. [PMID: 31913681 DOI: 10.1152/ajplung.00025.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transfusion of red blood cells (RBCs) is a common life-saving clinical practice in severely anemic or hemorrhagic patients; however, it may result in serious pathological complications such as transfusion-related acute lung injury. The factors mediating the deleterious effects of RBC transfusion remain unclear. In this study, we tested the effects of washed long-term (RBC-O; >28 days) versus short-term (RBC-F; <14 days) stored RBCs and their supernatants on lung endothelial (EC) permeability under control and inflammatory conditions. RBCs enhanced basal EC barrier function as evidenced by an increase in transendothelial electrical resistance and decrease in permeability for macromolecules. RBCs also attenuated EC hyperpermeability and suppressed secretion of EC adhesion molecule ICAM-1 and proinflammatory cytokine IL-8 in response to LPS or TNF-α. In both settings, RBC-F had slightly higher barrier protective effects as compared with RBC-O. In contrast, supernatants from both RBC-F and RBC-O disrupted the EC barrier. The early phase of EC permeability response caused by RBC supernatants was partially suppressed by antioxidant N-acetyl cysteine and inhibitor of Src kinase family PP2, while addition of heme blocker and inhibition of NOD-like receptor family pyrin domain containing protein 3 (NLRP3), stress MAP kinases, receptor for advanced glycation end-products (RAGE), or Toll-like receptor-4 (TLR4) signaling were without effect. Morphological analysis revealed that RBC supernatants increased LPS- and TNF-α-induced breakdown of intercellular junctions and formation of paracellular gaps. RBC supernatants augmented LPS- and TNF-α-induced EC inflammation reflected by increased production of IL-6, IL-8, and soluble ICAM-1. These findings demonstrate the deleterious effects of RBC supernatants on EC function, which may have a major impact in pathological consequences associated with RBC transfusion.
Collapse
Affiliation(s)
- Junghyun Kim
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Trang T T Nguyen
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yue Li
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Boyoung Cha
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael A Mazzeffi
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna A Birukova
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Lu M, Lezzar DL, Vörös E, Shevkoplyas SS. Traditional and emerging technologies for washing and volume reducing blood products. J Blood Med 2019; 10:37-46. [PMID: 30655711 PMCID: PMC6322496 DOI: 10.2147/jbm.s166316] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Millions of blood components including red blood cells, platelets, and granulocytes are transfused each year in the United States. The transfusion of these blood products may be associated with adverse clinical outcomes in some patients due to residual proteins and other contaminants that accumulate in blood units during processing and storage. Blood products are, therefore, often washed in normal saline or other media to remove the contaminants and improve the quality of blood cells before transfusion. While there are numerous methods for washing and volume reducing blood components, a vast majority utilize centrifugation-based processing, such as manual centrifugation, open and closed cell processing systems, and cell salvage/autotransfusion devices. Although these technologies are widely employed with a relatively low risk to the average patient, there is evidence that centrifugation-based processing may be inadequate when transfusing to immunocompromised patients, neonatal and infant patients, or patients susceptible to transfusion-related allergic reactions. Cell separation and volume reduction techniques that employ centrifugation have been shown to damage blood cells, contributing to these adverse outcomes. The limitations and disadvantages of centrifugation-based processing have spurred the development of novel centrifugation-free methods for washing and volume reducing blood components, thereby causing significantly less damage to the cells. Some of these emerging technologies are already transforming niche applications, poised to enter mainstream blood cell processing in the not too distant future.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, USA,
| | - Dalia L Lezzar
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, USA,
| | - Eszter Vörös
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, USA,
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, USA,
| |
Collapse
|
5
|
Vörös E, Piety NZ, Strachan BC, Lu M, Shevkoplyas SS. Centrifugation-free washing: A novel approach for removing immunoglobulin A from stored red blood cells. Am J Hematol 2018; 93:518-526. [PMID: 29285804 DOI: 10.1002/ajh.25026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 01/28/2023]
Abstract
Washed red blood cells (RBCs) are indicated for immunoglobulin A (IgA) deficient recipients. Centrifugation-based cell processors commonly used by hospital blood banks cannot consistently reduce IgA below the recommended levels, hence double washing is frequently required. Here, we describe a prototype of a simple, portable, disposable system capable of washing stored RBCs without centrifugation, while reducing IgA below 0.05 mg/dL in a single run. Samples from RBC units (n = 8, leukoreduced, 4-6 weeks storage duration) were diluted with normal saline to a hematocrit of 10%, and then washed using either the prototype washing system, or via conventional centrifugation. The efficiency of the two washing methods was quantified and compared by measuring several key in vitro quality metrics. The prototype of the washing system was able to process stored RBCs at a rate of 300 mL/hour, producing a suspension of washed RBCs with 43 ± 3% hematocrit and 86 ± 7% cell recovery. Overall, the two washing methods performed similarly for most measured parameters, lowering the concentration of free hemoglobin by >4-fold and total free protein by >10-fold. Importantly, the new washing system reduced the IgA level to 0.02 ± 0.01 mg/mL, a concentration 5-fold lower than that produced by conventional centrifugation. This proof-of-concept study showed that centrifugation may be unnecessary for washing stored RBCs. A simple, disposable, centrifugation-free washing system could be particularly useful in smaller medical facilities and resource limited settings that may lack access to centrifugation-based cell processors.
Collapse
Affiliation(s)
- Eszter Vörös
- Department of Biomedical Engineering; University of Houston; Houston Texas 77204
| | - Nathaniel Z. Piety
- Department of Biomedical Engineering; University of Houston; Houston Texas 77204
| | - Briony C. Strachan
- Department of Biomedical Engineering; University of Houston; Houston Texas 77204
| | - Madeleine Lu
- Department of Biomedical Engineering; University of Houston; Houston Texas 77204
| | | |
Collapse
|