1
|
Yan C, Wu H, Fang X, He J, Zhu F. Platelet, a key regulator of innate and adaptive immunity. Front Med (Lausanne) 2023; 10:1074878. [PMID: 36968817 PMCID: PMC10038213 DOI: 10.3389/fmed.2023.1074878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Platelets, anucleate blood components, represent the major cell type involved in the regulation of hemostasis and thrombosis. In addition to performing haemostatic roles, platelets can influence both innate and adaptive immune responses. In this review, we summarize the development of platelets and their functions in hemostasis. We also discuss the interactions between platelet products and innate or adaptive immune cells, including neutrophils, monocytes, macrophages, T cells, B cells and dendritic cells. Activated platelets and released molecules regulate the differentiation and function of these cells via platelet-derived receptors or secreting molecules. Platelets have dual effects on nearly all immune cells. Understanding the exact mechanisms underlying these effects will enable further application of platelet transfusion.
Collapse
Affiliation(s)
- Cheng Yan
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haojie Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianchun Fang
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junji He
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhu
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Feng Zhu,
| |
Collapse
|
2
|
Wood B, Padula MP, Marks DC, Johnson L. Cryopreservation alters the immune characteristics of platelets. Transfusion 2021; 61:3432-3442. [PMID: 34636427 DOI: 10.1111/trf.16697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cryopreserved platelets are under clinical evaluation as they offer improvements in shelf-life and potentially hemostatic effectiveness. However, the effect of cryopreservation on characteristics related to the immune function of platelets has not been examined. STUDY DESIGN AND METHODS Buffy coat derived platelets were cryopreserved at -80°C using 5%-6% dimethylsulfoxide (DMSO, n = 8). Paired testing was conducted pre-freeze (PF), post-thaw (PT0), and after 24 h of post-thaw storage at room temperature (PT24). The concentration of biological response modifiers (BRMs) in the supernatant was measured using commercial ELISAs and surface receptor abundance was assessed by flow cytometry. RESULTS Cryopreservation resulted in increased RANTES, PF4, and C3a but decreased IL-1β, OX40L, IL-13, IL-27, CD40L, and C5a concentrations in the supernatant, compared to PF samples. C4a, endocan, and HMGB1 concentrations were similar between the PF and PT0 groups. The abundance of surface-expressed P-selectin, siglec-7, TLR3, TLR7, and TLR9 was increased PT0; while CD40, CLEC2, ICAM-2, and MHC-I were decreased, compared to PF. The surface abundance of CD40L, B7-2, DC-SIGN, HCAM, TLR1, TLR2, TLR4, and TLR6 was unchanged by cryopreservation. Following 24 h of post-thaw storage, all immune associated receptors and TLRs increased to levels higher than observed on PF and PT0 platelets. CONCLUSION Cryopreservation alters the immune phenotype of platelets. Understanding the clinical implications of the observed changes in BRM release and receptor abundance are essential, as they may influence the likelihood of adverse events.
Collapse
Affiliation(s)
- Ben Wood
- Research & Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| |
Collapse
|
3
|
Singh MV, Suwunnakorn S, Simpson SR, Weber EA, Singh VB, Kalinski P, Maggirwar SB. Monocytes complexed to platelets differentiate into functionally deficient dendritic cells. J Leukoc Biol 2021; 109:807-820. [PMID: 32663904 PMCID: PMC7854860 DOI: 10.1002/jlb.3a0620-460rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to their role in hemostasis, platelets store numerous immunoregulatory molecules such as CD40L, TGFβ, β2-microglobulin, and IL-1β and release them upon activation. Previous studies indicate that activated platelets form transient complexes with monocytes, especially in HIV infected individuals and induce a proinflammatory monocyte phenotype. Because monocytes can act as precursors of dendritic cells (DCs) during infection/inflammation as well as for generation of DC-based vaccine therapies, we evaluated the impact of activated platelets on monocyte differentiation into DCs. We observed that in vitro cultured DCs derived from platelet-monocyte complexes (PMCs) exhibit reduced levels of molecules critical to DC function (CD206, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin, CD80, CD86, CCR7) and reduced antigen uptake capacity. DCs derived from PMCs also showed reduced ability to activate naïve CD4+ and CD8+ T cells, and secrete IL-12p70 in response to CD40L stimulation, resulting in decreased ability to promote type-1 immune responses to HIV antigens. Our results indicate that formation of complexes with activated platelets can suppress the development of functional DCs from such monocytes. Disruption of PMCs in vivo via antiplatelet drugs such as Clopidogrel/Prasugrel or the application of platelet-free monocytes for DCs generation in vitro, may be used to enhance immunization and augment the immune control of HIV.
Collapse
Affiliation(s)
- Meera V Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sumanun Suwunnakorn
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Sydney R Simpson
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Emily A Weber
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Pawel Kalinski
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Saris A, Steuten J, Schrijver DP, van Schijndel G, Zwaginga JJ, van Ham SM, ten Brinke A. Inhibition of Dendritic Cell Activation and Modulation of T Cell Polarization by the Platelet Secretome. Front Immunol 2021; 12:631285. [PMID: 33737933 PMCID: PMC7961920 DOI: 10.3389/fimmu.2021.631285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelet transfusions are a frequently administered therapy for especially hemato-oncological patients with thrombocytopenia. Next to their primary function in hemostasis, currently there is increased attention for the capacity of platelets to affect the function of various cells of the immune system. Here, we investigate the capacity of platelets to immuno-modulate monocyte-derived dendritic cells (moDC) as well as primary dendritic cells and effects on subsequent T cell responses. Platelets significantly inhibited pro-inflammatory (IL-12, IL-6, TNFα) and increased anti-inflammatory (IL-10) cytokine production of moDCs primed with toll-like receptor (TLR)-dependent and TLR-independent stimuli. Transwell assays and ultracentrifugation revealed that a soluble factor secreted by platelets, but not microvesicles, inhibited DC activation. Interestingly, platelet-derived soluble mediators also inhibited cytokine production by human ex vivo stimulated myeloid CD1c+ conventional DC2. Moreover, platelets and platelet-derived soluble mediators inhibited T cell priming and T helper differentiation toward an IFNγ+ Th1 phenotype by moDCs. Overall, these results show that platelets are able to inhibit the pro-inflammatory properties of DCs, and may even induce an anti-inflammatory DC phenotype, with decreased T cell priming capacity by the DC. The results of this study provide more insight in the potential role of platelets in immune modulation, especially in the context of platelet transfusions.
Collapse
Affiliation(s)
- Anno Saris
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Infectious Disease, Leiden University Medical Center, Leiden, Netherlands
| | - Juulke Steuten
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David P. Schrijver
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gijs van Schijndel
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jaap Jan Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Wood B, Padula MP, Marks DC, Johnson L. The immune potential of ex vivo stored platelets: a review. Vox Sang 2020; 116:477-488. [PMID: 33326606 DOI: 10.1111/vox.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/14/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Abstract
Platelets are now acknowledged as key regulators of the immune system, as they are capable of mediating inflammation, leucocyte recruitment and activation. This activity is facilitated through platelet activation, which induces significant changes in the surface receptor profile and triggers the release of a range of soluble biological response modifiers (BRMs). In the field of transfusion medicine, the immune function of platelets has gained considerable attention as this may be linked to the development of adverse transfusion reactions. Further, component manufacturing and storage methodologies may impact the immunoregulatory role of platelets, and an understanding of this impact is crucial and should be considered alongside their haemostatic characteristics. This review highlights the key interactions between platelets and traditional immune modulators. Further, the potential impact of current and novel component storage methodologies, such as refrigeration and cryopreservation, on this functional capacity is examined, highlighting why further knowledge in this area would be of benefit.
Collapse
Affiliation(s)
- Ben Wood
- Research & Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia
| |
Collapse
|
6
|
Zhao M, Zhou Q, He C, Zhang Y, Wang Z, Cai R, Ma C, Li Y, Wang X, Zhan L. Stored red blood cells enhance in vivo migration of dendritic cells by promoting reactive oxygen species-induced cytoskeletal rearrangement. Transfusion 2019; 59:1312-1323. [PMID: 30614543 DOI: 10.1111/trf.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND A complex array of physicochemical changes occurs in red blood cells (RBCs) during storage, leading to enhanced posttransfusion clearance. Dendritic cells (DCs) play crucial roles in the engulfment of aged RBCs; however, it is unclear how stored RBCs (sRBCs) modulate their responses to inflammatory stimuli and DC migration ability. STUDY DESIGN AND METHODS In this study, we examined whether sRBCs affect the migration ability of DCs and elucidated the detailed mechanisms mediating this process. Murine RBCs were incubated with marrow DCs after removing the storage supernatant. The effects of sRBCs on cytokine secretion from DCs, surface marker expression, and homing ability were examined. RESULTS More sRBCs were internalized by DCs than fresh RBCs (fRBCs), and RBC accumulation significantly promoted the expression of allostimulatory molecules and the secretion of Th1-type cytokines in the presence of lipopolysaccharide (LPS). In particular, the lymphoid-tissue homing ability of transfused DCs treated with sRBCs (sRBC-DCs) was also significantly greater than that of fRBCs. Up regulation of CCR7 and improved organization of the cytoskeleton were observed in sRBC-DCs, and blocking Rho/Rho-associated protein kinase (ROCK), PI3K/Akt, and NF-κB pathways greatly hindered cytoskeletal rearrangement. Moreover, high levels of reactive oxygen species (ROS) were detected in sRBC-DCs, and treatment with N-acetylcysteine simultaneously decreased the lymph node-homing ability of DCs and phosphorylation of RhoA, ROCK1, and cortactin. CONCLUSIONS sRBCs initiated differential immune responses compared to fRBCs, and the presence of LPS augmented this phenomenon. Up regulation of CCR7 and ROS production promotes cytoskeletal reorganization and contributes to the increased homing of sRBCs-DCs.
Collapse
Affiliation(s)
- Man Zhao
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China.,Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Qianqian Zhou
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Chulin He
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Yulong Zhang
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Zhengjun Wang
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Ruiying Cai
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Cong Ma
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Yuan Li
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Xiaohui Wang
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Linsheng Zhan
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China.,Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|