1
|
Chung Y, Kim HJ, Kim H, Hwang SH, Oh HB, Ko DH. Investigation of variables affecting the immunogenicity of blood group antigens using a calculation formula. Sci Rep 2023; 13:8748. [PMID: 37253793 DOI: 10.1038/s41598-023-36078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023] Open
Abstract
Previous studies on the immunogenicity of blood group antigens have utilized a formula incorporating antigen frequencies and relative frequencies of unexpected antibodies to the corresponding antigens. This study was aimed at investigating other variables potentially affecting the estimation of immunogenicity using this formula. We examined the effect of multiple transfusions, as there are more chance for a recipient to receive repeated transfusions rather than only once; the effect of antigen density, which may vary depending on homozygote/heterozygote; and the effect of unreliability of the observed frequency of rare antibodies and antigens. For multiple transfusions, the expected antibody frequency increased as the number of transfusions increased. For antigen density, the immunogenicity was falsely low for the low-prevalence antigen, and this tendency intensified as the effect of antigen density increased. Expected antibody frequencies were significantly affected by the uncertainties caused by estimation of small numbers. This study showed that the effects of various factors on the immunogenicity of blood group antigens depended on the antigen frequency. Estimating the immunogenicity of blood group antigens requires acknowledging the diverse factors that can affect it and interpreting the findings with caution.
Collapse
Affiliation(s)
- Yousun Chung
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Han Joo Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Hyungsuk Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Heung-Bum Oh
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Dae-Hyun Ko
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
| |
Collapse
|
2
|
Wabnitz H, Cruz-Leal Y, Lazarus AH. Antigen copy number and antibody dose can determine the outcome of erythrocyte alloimmunization inducing either antibody-mediated immune suppression or enhancement in a murine model. Transfusion 2023; 63:696-702. [PMID: 36802050 DOI: 10.1111/trf.17284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND The administration of anti-D for the prevention of hemolytic disease of the fetus and newborn is one of the most successful clinical uses of the phenomenon of antibody-mediated immune suppression (AMIS). However, despite adequate prophylaxis, failures can still occur in the clinic and are poorly understood. Recently, the copy number of red blood cell (RBC) antigens has been shown to influence immunogenicity in the context of RBC alloimmunization; however, its influence on AMIS remains unexplored. STUDY DESIGN AND METHODS RBCs expressing approximately 3,600 and approximately 12,400 copy numbers of surface-bound hen egg lysozyme (HEL), named respectively HELmed -RBCs and HELhi -RBCs, and selected doses of a polyclonal HEL-specific IgG were transfused into mice. Recipient HEL-specific IgM, IgG, and IgG subclass responses were evaluated by ELISA. RESULTS Antigen copy number affected the antibody dose required for AMIS induction with higher antigen copy numbers requiring larger doses of antibody. For instance, 5 μg of antibody caused AMIS for HELmed -RBCs but not HELhi -RBCs, while 20 μg induced significant suppression for both HEL-RBCs. Overall, increasing amounts of the AMIS-inducing antibody were associated with a more complete AMIS effect. In contrast, the lowest tested doses of the AMIS-inducing IgG led to evidence of enhancement at the IgM and IgG levels. DISCUSSION The results demonstrate that the relationship between antigen copy number and antibody dose can influence the outcome of AMIS. Further, this work suggests that the same antibody preparation can induce both AMIS and enhancement but that the outcome may depend on the quantitative interrelationship of antigen-antibody binding.
Collapse
Affiliation(s)
- Hanna Wabnitz
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yoelys Cruz-Leal
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wabnitz H, Cruz-Leal Y, Lazarus AH. Antigen-specific IgG subclass composition in recipient mice can indicate the degree of red blood cell alloimmunization as well as discern between primary and secondary immunization. Transfusion 2023; 63:619-628. [PMID: 36591986 DOI: 10.1111/trf.17232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Despite the vast antigen disparity between donor and recipient red blood cells (RBCs), only 2%-6% of transfusion patients mount an alloantibody response. Recently, RBC antigen density has been proposed as one of the factors that can influence alloimmunization, however, there has been no characterization of the role of antigen density along with RBC dose in primary and secondary immunization. STUDY DESIGN AND METHODS To generate RBCs that express distinct antigen copy numbers, different quantities of hen egg lysozyme (HEL) were coupled to murine RBCs. The HEL-RBCs were subsequently transfused into recipient mice at different RBC doses and their HEL-specific IgM, IgG, and IgG subclass response was evaluated. RESULTS Productive immune responses could be generated through a high copy number antigen transfused at low RBC doses or a low copy number transfused at high RBC doses. Further, primary but submaximal humoral immunization predominantly induced the IgG2b and IgG3 subclasses. In contrast, a maximal primary immunization or a secondary immunization induced all four IgG subclasses. DISCUSSION Our results confirm the existence of an antigen threshold for productive immune responses but indicate that a high antigen copy number alone might not be enough to induce a response, but rather a combination of both antigen copy number and cell dosage may determine the outcome of immunization. Further, this study provides a proof of concept that the IgG subclass composition can be an indicator of the level of RBC alloimmunization as well as discern between primary and secondary immunization at least in this murine model.
Collapse
Affiliation(s)
- Hanna Wabnitz
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yoelys Cruz-Leal
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Patel SR, Maier CL, Zimring JC. Alloantigen Copy Number as a Critical Factor in RBC Alloimmunization. Transfus Med Rev 2023; 37:21-26. [PMID: 36725483 PMCID: PMC10023450 DOI: 10.1016/j.tmrv.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
RBC alloimmunization remains a significant barrier to ongoing transfusion therapy leading to morbidity, and in extreme cases mortality, due to delayed or insufficient units of compatible RBCs. In addition, the monitoring and characterization of alloantibodies, often with multiple specificities in a single patient, consumes substantial health care resources. Extended phenotypic matching has mitigated, but not eliminated, RBC alloimmunization and is only logistically available for specialized populations. Thus, RBC alloimmunization remains a substantial problem. In recent decades it has become clear that mechanisms of RBC alloimmunization are distinct from other antigens and lack of mechanistic understanding likely contributes to the fact that there are no approved interventions to prevent RBC alloimmunization from transfusion. The combination of human studies and murine modeling have identified several key factors in RBC alloimmunization. In both humans and mice, immunogenicity is a function of alloantigen copy number on RBCs. Murine studies have further shown that copy number not only changes rates of immunization but the mechanisms of antibody formation. This review summarizes the current understanding of quantitative and qualitative effects of alloantigen copy number on RBC alloimmunization.
Collapse
Affiliation(s)
- Seema R Patel
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl L Maier
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - James C Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA; Carter Immunology Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Howe JG, Stack G. Relationship between B-cell epitope structural properties and the immunogenicity of blood group antigens: Outlier properties of the Kell K1 antigen. Transfusion 2022; 62:2349-2362. [PMID: 36205403 DOI: 10.1111/trf.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The immunogenicities of polypeptide blood group antigens vary, despite most being created by single amino acid (AA) substitutions. To study the basis of these differences, we employed an immunoinformatics approach to determine whether AA substitution sites of blood group antigens have structural features typical of B-cell epitopes and whether the extent of B-cell epitope properties is positively related to immunogenicity. STUDY DESIGN AND METHODS Fifteen structural property prediction programs were used to determine the likelihood of β-turns, surface accessibility, flexibility, hydrophilicity, particular AA composition and AA pairs, and other B-cell epitope properties at AA substitution sites of polypeptide blood group antigens. RESULTS AA substitution sites of Lua , Jka , E, c, M, Fya , C, and S were each located in regions with at least two structural features typical of B-cell epitopes. The substitution site of K, the most immunogenic non-ABO/D antigen, scored the lowest for most B-cell epitope properties and was the only one not predicted to be part of a linear B-cell epitope. The most immunogenic antigens studied (K, Jka , Lua , E) had B-cell epitope structural properties determined by the fewest programs; the least immunogenic antigens (e.g., Fya , S, C, c) had B-cell epitope properties according to the most programs. DISCUSSION Counter to prediction, the immunogenicity of polypeptide blood group antigens was not positively related to B-cell epitope structural features present at their AA-substitution sites. Instead, it tended to be negatively related. The AA-substitution site of the most immunogenic non-ABO/D antigen, K, had the least B-cell epitope features.
Collapse
Affiliation(s)
- John G Howe
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gary Stack
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Pathology and Laboratory Medicine Service, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|