1
|
Wang S, Li D, Chen F, Jiang W, Luo W, Zhu G, Zhao J, He L. Establishment of a Transient and Stable Transfection System for Babesia duncani Using a Homologous Recombination Strategy. Front Cell Infect Microbiol 2022; 12:844498. [PMID: 35463640 PMCID: PMC9019647 DOI: 10.3389/fcimb.2022.844498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic modification provides an invaluable molecular tool to dissect the biology and pathogenesis of pathogens. However, no report is available about the genetic modification of Babesia duncani, a pathogen responsible for human babesiosis that is widespread in North America, suggesting the necessity to develop a genetic manipulation method to improve the strategies for studying and understanding the biology of protozoan pathogens. The establishment of a genetic modification method requires promoters, selectable markers, and reporter genes. Here, the double-copy gene elongation factor-1α (ef-1α) and its promoters were amplified by conventional PCR and confirmed by sequencing. We established a transient transfection system by using the ef-1αB promoter and the reporter gene mCherry and achieved stable transfection through homologous recombination to integrate the selection marker hDHFR-eGFP into the parasite genome. The potential of this genetic modification method was tested by knocking out the thioredoxin peroxidase-1 (TPX-1) gene, and under the drug pressure of 5 nM WR99210, 96.3% of the parasites were observed to express green fluorescence protein (eGFP) by flow cytometry at day 7 post-transfection. Additionally, the clone line of the TPX-1 knockout parasite was successfully obtained by the limiting dilution method. This study provided a transfection method for B. duncani, which may facilitate gene function research and vaccine development of B. duncani.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangwei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weijun Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wanxin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, the Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Lan He,
| |
Collapse
|
2
|
Effective Therapy Targeting Cytochrome bc1 Prevents Babesia Erythrocytic Development and Protects from Lethal Infection. Antimicrob Agents Chemother 2021; 65:e0066221. [PMID: 34152821 PMCID: PMC8370247 DOI: 10.1128/aac.00662-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
An effective strategy to control blood-borne diseases and prevent outbreak recrudescence involves targeting conserved metabolic processes that are essential for pathogen viability. One such target for Plasmodium and Babesia, the infectious agents of malaria and babesiosis, respectively, is the mitochondrial cytochrome bc1 protein complex, which can be inhibited by endochin-like quinolones (ELQ) and atovaquone. We used the tick-transmitted and culturable blood-borne pathogen Babesia duncani to evaluate the structure-activity relationship, safety, efficacy, and mode of action of ELQs. We identified a potent and highly selective ELQ prodrug (ELQ-502), which, alone or in combination with atovaquone, eliminates B. microti and B. duncani infections in vitro and in mouse models of parasitemia and lethal infection. The strong efficacy at low dose, excellent safety, bioavailability, and long half-life of this experimental therapy make it an ideal clinical candidate for the treatment of human infections caused by Babesia and its closely related apicomplexan parasites.
Collapse
|
3
|
McCullough J. Transfusion‐Transmitted Diseases. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Emerging Human Babesiosis with "Ground Zero" in North America. Microorganisms 2021; 9:microorganisms9020440. [PMID: 33672522 PMCID: PMC7923768 DOI: 10.3390/microorganisms9020440] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The first case of human babesiosis was reported in the literature in 1957. The clinical disease has sporadically occurred as rare case reports in North America and Europe in the subsequent decades. Since the new millennium, especially in the last decade, many more cases have apparently appeared not only in these regions but also in Asia, South America, and Africa. More than 20,000 cases of human babesiosis have been reported in North America alone. In several cross-sectional surveys, exposure to Babesia spp. has been demonstrated within urban and rural human populations with clinical babesiosis reported in both immunocompromised and immunocompetent humans. This review serves to highlight the widespread distribution of these tick-borne pathogens in humans, their tick vectors in readily accessible environments such as parks and recreational areas, and their phylogenetic relationships.
Collapse
|
5
|
Menis M, Whitaker BI, Wernecke M, Jiao Y, Eder A, Kumar S, Xu W, Liao J, Wei Y, MaCurdy TE, Kelman JA, Anderson SA, Forshee RA. Babesiosis Occurrence Among United States Medicare Beneficiaries, Ages 65 and Older, During 2006-2017: Overall and by State and County of Residence. Open Forum Infect Dis 2020; 8:ofaa608. [PMID: 33598501 DOI: 10.1093/ofid/ofaa608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/09/2020] [Indexed: 12/29/2022] Open
Abstract
Background Human babesiosis is a mild-to-severe parasitic infection that poses health concerns especially in older and other at-risk populations. The study objective was to assess babesiosis occurrence among US Medicare beneficiaries, ages 65 and older, during 2006-2017. Methods Our retrospective claims-based study used Medicare databases. Babesiosis cases were identified using recorded diagnosis codes. The study estimated rates (per 100 000 beneficiary-years) overall, by year, diagnosis month, demographics, and state and county of residence. Results Nationwide, 19 469 beneficiaries had babesiosis recorded, at a rate of 6 per 100 000 person-years, ranging from 4 in 2006 to 9 in 2017 (P < .05). The highest babesiosis rates by state were in the following: Massachusetts (62), Rhode Island (61), Connecticut (51), New York (30), and New Jersey (19). The highest rates by county were in the following: Nantucket, Massachusetts (1089); Dukes, Massachusetts (236); Barnstable, Massachusetts (213); and Dutchess, New York (205). Increasing rates, from 2006 through 2017 (P < .05), were identified in multiple states, including states previously considered nonendemic. New Hampshire, Maine, Vermont, Pennsylvania, and Delaware saw rates increase by several times. Conclusions Our 12-year study shows substantially increasing babesiosis diagnosis trends, with highest rates in well established endemic states. It also suggests expansion of babesiosis infections in other states and highlights the utility of real-world evidence.
Collapse
Affiliation(s)
- Mikhail Menis
- Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | | | - Anne Eder
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sanjai Kumar
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - Wenjie Xu
- Acumen LLC, Burlingame, California, USA
| | | | - Yuqin Wei
- Acumen LLC, Burlingame, California, USA
| | - Thomas E MaCurdy
- Acumen LLC, Burlingame, California, USA.,Stanford University, Stanford, California, USA
| | - Jeffrey A Kelman
- Centers for Medicare & Medicaid Services, Baltimore, Maryland, USA
| | | | | |
Collapse
|
6
|
Tonnetti L, Young C, Kessler DA, Williamson PC, Reik R, Proctor MC, Brès V, Deisting B, Bakkour S, Schneider W, Diner S, Busch MP, Stramer SL, Linnen JM. Transcription‐mediated amplification blood donation screening for
Babesia. Transfusion 2019; 60:317-325. [DOI: 10.1111/trf.15630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023]
|
7
|
Scott JD, Clark KL, Coble NM, Ballantyne TR. Detection and Transstadial Passage of Babesia Species and Borrelia burgdorferi Sensu Lato in Ticks Collected from Avian and Mammalian Hosts in Canada. Healthcare (Basel) 2019; 7:E155. [PMID: 31810270 PMCID: PMC6955799 DOI: 10.3390/healthcare7040155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022] Open
Abstract
Lyme disease and human babesiosis are the most common tick-borne zoonoses in the Temperate Zone of North America. The number of infected patients has continued to rise globally, and these zoonoses pose a major healthcare threat. This tick-host-pathogen study was conducted to test for infectious microbes associated with Lyme disease and human babesiosis in Canada. Using the flagellin (flaB) gene, three members of the Borrelia burgdorferi sensu lato (Bbsl) complex were detected, namely a Borrelia lanei-like spirochete, Borrelia burgdorferi sensu stricto (Bbss), and a distinct strain that may represent a separate Bbsl genospecies. This novel Bbsl strain was detected in a mouse tick, Ixodes muris, collected from a House Wren, Troglodytes aedon, in Quebec during the southward fall migration. The presence of Bbsl in bird-feeding larvae of I. muris suggests reservoir competency in three passerines (i.e., Common Yellowthroat, House Wren, Magnolia Warbler). Based on the 18S ribosomal RNA (rRNA) gene, three Babesia species (i.e., Babesia divergens-like, Babesia microti, Babesia odocoilei) were detected in field-collected ticks. Not only was B. odocoilei found in songbird-derived ticks, this piroplasm was apparent in adult questing blacklegged ticks, Ixodes scapularis, in southern Canada. By allowing live, engorged ticks to molt, we confirm the transstadial passage of Bbsl in I. muris and B. odocoilei in I. scapularis. Bbss and Babesia microti were detected concurrently in a groundhog tick, Ixodes cookei, in Western Ontario. In Alberta, a winter tick, Dermacentor albipictus, which was collected from a moose, Alces alces, tested positive for Bbss. Notably, a B. divergens-like piroplasm was detected in a rabbit tick, Haemaphysalis leporispalustris, collected from an eastern cottontail in southern Manitoba; this Babesia species is a first-time discovery in Canada. This rabbit tick was also co-infected with Borrelia lanei-like spirochetes, which constitutes a first in Canada. Overall, five ticks were concurrently infected with Babesia and Bbsl pathogens and, after the molt, could potentially co-infect humans. Notably, we provide the first authentic report of I. scapularis ticks co-infected with Bbsl and B. odocoilei in Canada. The full extent of infectious microorganisms transmitted to humans by ticks is not fully elucidated, and clinicians need to be aware of the complexity of these tick-transmitted enzootic agents on human health. Diagnosis and treatment must be administered by those with accredited medical training in tick-borne zoonosis.
Collapse
Affiliation(s)
- John D. Scott
- International Lyme and Associated Diseases Society, 2 Wisconsin Circle, Suite 700, Chevy Chase, MD 20815-7007, USA
| | - Kerry L. Clark
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; (K.L.C.); (N.M.C.); (T.R.B.)
| | - Nikki M. Coble
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; (K.L.C.); (N.M.C.); (T.R.B.)
| | - Taylor R. Ballantyne
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; (K.L.C.); (N.M.C.); (T.R.B.)
| |
Collapse
|
8
|
Tonnetti L, Townsend RL, Dodd RY, Stramer SL. Characteristics of transfusion-transmitted Babesia microti, American Red Cross 2010-2017. Transfusion 2019; 59:2908-2912. [PMID: 31250463 DOI: 10.1111/trf.15425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Babesia microti, a red blood cell (RBC) parasite transmitted naturally to vertebrate hosts by ixodid ticks, is endemic to the northeastern and upper midwestern United States, with the geographic range of infected ticks expanding. B. microti is a blood safety issue with >200 transfusion-transmissions reported. METHODS The American Red Cross's Hemovigilance program investigated hospital-reported transfusion-transmitted babesiosis (TTB) cases. Follow-up samples from involved donors were tested for B. microti antibodies and parasite DNA, the latter by real-time polymerase chain reaction (PCR). Test-positive donors were permanently deferred from future donations. RESULTS B. microti-positive donors were implicated in 77 of 143 suspect TTB cases investigated from 2010 through 2017. In four cases, two positive donors were identified for a total of 81 positive donors. In three cases, a RBC unit was split and components transfused multiple times to the same pediatric recipient. RBCs were the transmitting product in all cases. At follow-up, all involved donors were antibody positive; 25 donors were also PCR positive. Positive donations were collected throughout the year, peaking in the summer. Most donors (78) were resident of, or traveled to (2), an endemic state. One donor resided in a non-endemic state without relevant travel history. One fatality listed babesia as a contributing factor. No implicated donation was screened by an investigational protocol. CONCLUSIONS Babesiosis remains a blood safety issue. Prior to FDA-licensed screening test availability and final FDA Guidance, blood collectors in endemic states investigationally tested none, a portion, or all collections. Future expanded testing will reduce the frequency of TTB cases.
Collapse
Affiliation(s)
- Laura Tonnetti
- Scientific Affairs, American Red Cross, Rockville and Gaithersburg, Maryland
| | - Rebecca L Townsend
- Scientific Affairs, American Red Cross, Rockville and Gaithersburg, Maryland
| | - Roger Y Dodd
- Scientific Affairs, American Red Cross, Rockville and Gaithersburg, Maryland
| | - Susan L Stramer
- Scientific Affairs, American Red Cross, Rockville and Gaithersburg, Maryland
| |
Collapse
|