1
|
Ekström LD, Clements M, Roubinian N, Zhao J, Dahlén T, Busch MP, Edgren G. An agnostic study of donor and component factors associated with transfusion-related changes in laboratory markers. Transfusion 2025. [PMID: 40208213 DOI: 10.1111/trf.18249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Donor and red blood cell (RBC) component factors may affect patient outcomes after RBC transfusions, but data on the magnitude and consequences of these associations are limited. STUDY DESIGN AND METHODS In this retrospective cohort study, we analyzed associations between 10 donor and component factors-including donor age, hemoglobin, parity, sex, and component storage time-and changes in 55 clinical laboratory markers measured within 24 h before and after RBC transfusions. Primary analyses used data from the Swedish SCANDAT3-S database, with findings replicated in the U.S. REDS-III database. The primary outcome was the transfusion-related change in pre- and post-transfusion values of the laboratory markers, normalized per RBC unit transfused. RESULTS After adjusting for the false discovery rate, 33 significant associations were identified, with 20 replicated in the SCANDAT replication sample or the REDS-III cohort after Bonferroni corrections, and 18 remaining after visual assessment. Higher donor hemoglobin concentration consistently led to greater increases in recipient hemoglobin and measures of RBC mass. Extended component storage times were associated with elevated recipient bilirubin and carboxyhemoglobin levels. Differences in recipient hemoglobin response between the SCANDAT3-S and REDS-III cohorts suggest potential variations in transfusion efficacy across populations and practices. DISCUSSION These findings suggest that considering donor hemoglobin and RBC component storage duration could enhance transfusion efficacy, providing avenues for personalized transfusion strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Lucas D Ekström
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Mark Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nareg Roubinian
- Kaiser Permanente Division of Research, Pleasanton, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Jingcheng Zhao
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Torsten Dahlén
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Gustaf Edgren
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Huang H, Wu K, Deng G, Zhang Y. Impact of Same Red Blood Cell Infusion at Different Intervals on Premature Infants' Hemoglobin Levels. Int J Gen Med 2024; 17:4617-4626. [PMID: 39429959 PMCID: PMC11490242 DOI: 10.2147/ijgm.s483696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Purpose Blood transfusions are performed in small amounts in premature infants. Few studies have focused on the effect of the same red blood cell (RBC) package at different intervals on increasing hemoglobin(Hb) concentration. We aimed to determine the effect of infusion of the same RBC package at different time intervals on Hb levels in premature infants. Patients and Methods Data were collected about premature infants who received the same package of RBC transfusion at two different intervals. Venous blood Hb levels before and within 24 hours after transfusion were measured for the first and second transfusions. Overall, 196 premature infants with anemia were included in the study. The data were categorized into four groups (Group I, Group II, Group III and Group IV) based on the varying intervals between transfusions of the same red blood cells. Results Hb levels of the first and second transfusions with the same RBC package showed a significant difference pre and posttransfusion. Hb increments varied among groups: Group I (43.00 g/L), Group II (34.50 g/L), Group III (32.00 g/L), and Group IV (32.50 g/L), with Group I demonstrating a significant difference compared to Groups II, III, and IV (P<0.05), while no differences were noted among the latter groups. Conclusion In premature infants with anemia, hemoglobin levels significantly increased after infusion of the same RBC package at different intervals. An interval of 1 week had the most significant effect. What is New There are differences in the effect of infusion of the same RBC at different time intervals on hemoglobin levels in premature infants. An interval of 1 week had the most significant effect.
Collapse
Affiliation(s)
- Huifang Huang
- Intensive Care Unit, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Kunhai Wu
- Blood Transfusion Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Gaoxiang Deng
- Blood Transfusion Department, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yuqin Zhang
- Blood Transfusion Department, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
3
|
Peltier S, Marin M, Dzieciatkowska M, Dussiot M, Roy MK, Bruce J, Leblanc L, Hadjou Y, Georgeault S, Fricot A, Roussel C, Stephenson D, Casimir M, Sissoko A, Paye F, Dokmak S, Ndour PA, Roingeard P, Gautier EF, Spitalnik SL, Hermine O, Buffet PA, D'Alessandro A, Amireault P. Proteostasis and metabolic dysfunction in a distinct subset of storage-induced senescent erythrocytes targeted for clearance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612195. [PMID: 39314353 PMCID: PMC11419012 DOI: 10.1101/2024.09.11.612195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Although refrigerated storage slows the metabolism of volunteer donor RBCs, cellular aging still occurs throughout this in vitro process, which is essential in transfusion medicine. Storage-induced microerythrocytes (SMEs) are morphologically-altered senescent RBCs that accumulate during storage and which are cleared from circulation following transfusion. However, the molecular and cellular alterations that trigger clearance of this RBC subset remain to be identified. Using a staining protocol that sorts long-stored SMEs (i.e., CFSE high ) and morphologically-normal RBCs (CFSE low ), these in vitro aged cells were characterized. Metabolomics analysis identified depletion of energy, lipid-repair, and antioxidant metabolites in CFSE high RBCs. By redox proteomics, irreversible protein oxidation primarily affected CFSE high RBCs. By proteomics, 96 proteins, mostly in the proteostasis family, had relocated to CFSE high RBC membranes. CFSE high RBCs exhibited decreased proteasome activity and deformability; increased phosphatidylserine exposure, osmotic fragility, and endothelial cell adherence; and were cleared from the circulation during human spleen ex vivo perfusion. Conversely, molecular, cellular, and circulatory properties of long-stored CFSE low RBCs resembled those of short-stored RBCs. CFSE high RBCs are morphologically and metabolically altered, have irreversibly oxidized and membrane-relocated proteins, and exhibit decreased proteasome activity. In vitro aging during storage selectively alters metabolism and proteostasis in SMEs, targeting these senescent cells for clearance.
Collapse
|
4
|
Rydén J, Clements M, Wikman A, Hellström-Lindberg E, Edgren G, Höglund P. Red blood cell alloimmunization in myelodysplastic syndromes: Associations with sex, DAT-positivity, and increased transfusion needs. Transfusion 2023; 63:2040-2051. [PMID: 37818926 DOI: 10.1111/trf.17562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Many patients with myelodysplastic syndromes (MDS) need repeated red blood cell transfusions which entails a risk of immunization and antibody formation. Associations between alloantibodies, autoantibodies and increased transfusion requirements have been reported, but their relationship remains unclear. In this study, we analyzed factors potentially associated with red blood cell alloimmunization, as well as changes in transfusion intensity and post-transfusion hemoglobin increments. METHODS In a retrospective cohort study, we linked Swedish MDS patients diagnosed between 2003 and 2017 to transfusion and immunohematology data. Potentially associated factors were analyzed using Cox proportional hazards regression. The transfusion rate after detected alloimmunization was analyzed using a fixed effects Poisson regression. Post-transfusion hemoglobin increments before and after alloimmunization were compared using a mixed effects regression. RESULTS Alloantibodies following MDS diagnosis were detected in 50 out of 429 patients (11.7%). Female sex and a positive direct antiglobulin test (DAT) were independently associated with alloimmunization, with hazard ratios of 2.02 (95% confidence interval [CI] 1.08-3.78) and 9.72 (95% CI, 5.31-17.74), respectively. The transfusion rate following alloimmunization was increased with an incidence rate ratio of 1.33 (95% CI, 0.98-1.80) and the post-transfusion hemoglobin increment after alloimmunization was 1.40 g/L (95% CI, 0.52-2.28) lower per red blood cell unit (p = .002) compared to before alloimmunization, in multivariable analyses. DISCUSSION Alloimmunization against blood group antigens was associated with sex, DAT-positivity, increased transfusion needs, and lower post-transfusion hemoglobin increments. These findings warrant further investigation to evaluate the clinical significance of up-front typing and prophylactic antigen matching in patients with MDS.
Collapse
Affiliation(s)
- Jenny Rydén
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Mark Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Wikman
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gustaf Edgren
- Department of Cardiology, Södersjukhuset, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Fasano RM, Doctor A, Stowell SR, Spinella PC, Carson JL, Maier CL, Josephson CD, Triulzi DJ. Optimizing RBC Transfusion Outcomes in Patients with Acute Illness and in the Chronic Transfusion Setting. Transfus Med Rev 2023; 37:150758. [PMID: 37743191 DOI: 10.1016/j.tmrv.2023.150758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Red blood cell (RBC) transfusion is a common clinical intervention used to treat patients with acute and chronic anemia. The decision to transfuse RBCs in the acute setting is based on several factors but current clinical studies informing optimal RBC transfusion decision making (TDM) are largely based upon hemoglobin (Hb) level. In contrast to transfusion in acute settings, chronic RBC transfusion therapy has several different purposes and is associated with distinct transfusion risks such as iron overload and RBC alloimmunization. Consequently, RBC TDM in the chronic setting requires optimizing the survival of transfused RBCs in order to reduce transfusion exposure over the lifespan of an individual and the associated transfusion complications mentioned. This review summarizes the current medical literature addressing optimal RBC-TDM in the acute and chronic transfusion settings and discusses the current gaps in knowledge which need to be prioritized in future national and international research initiatives.
Collapse
Affiliation(s)
- Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA.
| | - Allan Doctor
- Division of Pediatric Critical Care Medicine and Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip C Spinella
- Departments of Surgery and Critical Care Medicine, Pittsburgh University, Pittsburgh, PA, USA
| | - Jeffrey L Carson
- Division of General Internal Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Cheryl L Maier
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Cassandra D Josephson
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Darrell J Triulzi
- Vitalant and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Qadri SM, Liu Y, Barty RL, Heddle NM, Sheffield WP. A positive blood culture is associated with a lower haemoglobin increment in hospitalized patients after red blood cell transfusion. Vox Sang 2023; 118:33-40. [PMID: 36125492 DOI: 10.1111/vox.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Abundant clinical evidence supports the safety of red blood cell (RBC) concentrates for transfusion irrespective of storage age, but still, less is known about how recipient characteristics may affect post-transfusion RBC recovery and function. Septic patients are frequently transfused. We hypothesized that the recipient environment in patients with septicaemia would blunt the increase in post-transfusion blood haemoglobin (Hb). The main objective was to compare the post-transfusion Hb increment in hospitalized patients with or without a positive blood culture. MATERIALS AND METHODS A retrospective cohort study using data from the Transfusion Research, Utilization, Surveillance, and Tracking database (TRUST) was performed. All adult non-trauma in-patients transfused between 2010 and 2017 with ≥1 RBC unit, and for whom both pre- and post-transfusion complete blood count and pre-transfusion blood culture data were available were included. A general linear model with binary blood culture positivity was fit for continuous Hb increment after transfusion and was adjusted for patient demographic parameters and transfusion-related covariates. RESULTS Among 210,263 admitted patients, 6252 were transfused: 596 had positive cultures, and 5656 had negative blood cultures. A modelled Hb deficit of 1.50 g/L in blood culture-positive patients was found. All covariates had a significant effect on Hb increment, except for the age of the transfused RBC. CONCLUSION Recipient blood culture positivity was associated with a statistically significant but modestly lower post-transfusion Hb increment in hospitalized patients. In isolation, the effect is unlikely to be clinically significant, but it could become so in combination with other recipient characteristics.
Collapse
Affiliation(s)
- Syed M Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada
| | - Yang Liu
- Department of Medicine and McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca L Barty
- Department of Medicine and McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Southwest Region, Ontario Regional Blood Coordinating Network, Hamilton, Ontario, Canada
| | - Nancy M Heddle
- Department of Medicine and McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - William P Sheffield
- Canadian Blood Services, Medical Affairs and Innovation, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Marin M, Peltier S, Hadjou Y, Georgeault S, Dussiot M, Roussel C, Hermine O, Roingeard P, Buffet PA, Amireault P. Storage-Induced Micro-Erythrocytes Can Be Quantified and Sorted by Flow Cytometry. Front Physiol 2022; 13:838138. [PMID: 35283784 PMCID: PMC8906515 DOI: 10.3389/fphys.2022.838138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Refrigerated storage of red cell concentrates before transfusion is associated with progressive alterations of red blood cells (RBC). Small RBC (type III echinocytes, sphero-echinocytes, and spherocytes) defined as storage-induced micro-erythrocytes (SME) appear during pretransfusion storage. SME accumulate with variable intensity from donor to donor, are cleared rapidly after transfusion, and their proportion correlates with transfusion recovery. They can be rapidly and objectively quantified using imaging flow cytometry (IFC). Quantifying SME using flow cytometry would further facilitate a physiologically relevant quality control of red cell concentrates. RBC stored in blood bank conditions were stained with a carboxyfluorescein succinimidyl ester (CFSE) dye and incubated at 37°C. CFSE intensity was assessed by flow cytometry and RBC morphology evaluated by IFC. We observed the accumulation of a CFSE high RBC subpopulation by flow cytometry that accounted for 3.3 and 47.2% at day 3 and 42 of storage, respectively. IFC brightfield images showed that this CFSE high subpopulation mostly contains SME while the CFSE low subpopulation mostly contains type I and II echinocytes and discocytes. Similar numbers of SME were quantified by IFC (based on projected surface area) and by flow cytometry (based on CFSE intensity). IFC and scanning electron microscopy showed that ≥95% pure subpopulations of CFSE high and CFSE low RBC were obtained by flow cytometry-based sorting. SME can now be quantified using a common fluorescent dye and a standard flow cytometer. The staining protocol enables specific sorting of SME, a useful tool to further characterize this RBC subpopulation targeted for premature clearance after transfusion.
Collapse
Affiliation(s)
- Mickaël Marin
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Sandy Peltier
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Youcef Hadjou
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Sonia Georgeault
- Plateforme des Microscopies, Infrastructures de Recherche en Biologie Santé et Agronomie, Programme Pluriformation Analyse des Systèmes Biologiques, Tours, France
| | - Michaël Dussiot
- Laboratoire d'Excellence GR-Ex, Paris, France.,U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France
| | - Camille Roussel
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,AP-HP, Laboratoire d'Hématologie, Hôpital Necker-Enfants Malades, Paris, France
| | - Olivier Hermine
- Laboratoire d'Excellence GR-Ex, Paris, France.,U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France.,Département d'Hématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Roingeard
- Plateforme des Microscopies, Infrastructures de Recherche en Biologie Santé et Agronomie, Programme Pluriformation Analyse des Systèmes Biologiques, Tours, France.,U1259, Centre Hospitalier Régional Universitaire de Tours, Morphogenèse et Antigénicité du VIH et des Virus des Hépatites, INSERM, Université de Tours, Tours, France
| | - Pierre A Buffet
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,AP-HP, Paris, France
| | - Pascal Amireault
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France
| |
Collapse
|
8
|
Carter PW, Dunham AJ. Modelling haemoglobin incremental loss on chronic red blood cell transfusions. Vox Sang 2022; 117:831-838. [PMID: 35238052 DOI: 10.1111/vox.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Understanding the impact of red blood cell (RBC) lifespan, initial RBC removal, and transfusion intervals on patient haemoglobin (Hb) levels and total iron exposure is not accessible for chronic transfusion scenarios. This article introduces the first model to help clinicians optimize chronic transfusion intervals to minimize transfusion frequency. MATERIALS AND METHODS Hb levels and iron exposure from multiple transfusions were calculated from Weibull residual lifespan distributions, the fraction effete RBC removed within 24-h (Xe ) and the nominal Hb increment. Two-unit transfusions of RBCs initiated at patient [Hb] = 7 g/dl were modelled for different RBC lifespans and transfusion intervals from 18 to 90 days, and Xe from 0.1 to 0.5. RESULTS Increased Xe requires shorter transfusion intervals to achieve steady-state [Hb] of 9 g/dl as follows: 30 days between transfusions at Xe = 0.5, 36 days at Xe = 0.4, 42 days at Xe = 0.3, 48 days at Xe = 0.2 and 54 days at Xe = 0.1. The same transfusion interval/Xe pairs result in a steady-state [Hb] = 8 g/dl when the RBC lifespan was halved. By reducing transfused RBC increment loss from 30% to 10%, annual transfusions were decreased by 22% with iron addition decreased by 24%. Acute dosing of iron occurs at the higher values of Xe on the day after a transfusion event. CONCLUSION Systematic trends in fractional Hb incremental loss Xe have been modelled and have a significant and calculatable impact on transfusion intervals and associated introduction of iron.
Collapse
|
9
|
Lal A, Wong T, Keel S, Pagano M, Chung J, Kamdar A, Rao L, Ikeda A, Puthenveetil G, Shah S, Yu J, Vichinsky E. The transfusion management of beta thalassemia in the United States. Transfusion 2021; 61:3027-3039. [PMID: 34453453 PMCID: PMC9292563 DOI: 10.1111/trf.16640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Affiliation(s)
- Ashutosh Lal
- Pediatric Hematology, University of California, San Francisco, California, USA
| | - Trisha Wong
- Pediatric Hematology/Oncology, Oregon Health and Science University, Portland, Oregon, USA
| | - Siobán Keel
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Monica Pagano
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jong Chung
- Pediatric Hematology/Oncology, University of California, Davis, California, USA
| | - Aditi Kamdar
- Pediatric Hematology/Oncology, Stanford University, Stanford, California, USA
| | - Latha Rao
- Pediatric Hematology/Oncology, Valley Children's Hospital, Madera, California, USA
| | - Alan Ikeda
- Pediatric Hematology/Oncology, Children's Specialty Center of Nevada, Las Vegas, Nevada, USA
| | - Geetha Puthenveetil
- Pediatric Hematology/Oncology, Children's Hospital of Orange County, Orange, California, USA
| | - Sanjay Shah
- Pediatric Hematology/Oncology, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Jennifer Yu
- Pediatric Hematology/Oncology, Rady Children's Hospital, San Diego, California, USA
| | - Elliott Vichinsky
- Pediatric Hematology, University of California, San Francisco, California, USA
| |
Collapse
|
10
|
Gamberini MR, Fortini M, Stievano A, Calori E, Riontino MV, Ceccherelli G, Venturelli D, Chicchi R, Biguzzi R, Fagnoni F, Portararo GA, Lasagni D, Borotti E, Buonocore R, Govoni M, Reverberi R. Impact of the preparation method of red cell concentrates on transfusion indices in thalassemia patients: A randomized crossover clinical trial. Transfusion 2021; 61:1729-1739. [PMID: 33948969 PMCID: PMC8252500 DOI: 10.1111/trf.16432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The average hemoglobin content of red cell concentrates (RCC) varies depending on the method of preparation. Surprisingly less data are available concerning the clinical impact of those differences. STUDY DESIGN AND METHODS The effects of two types of RCC (RCC-A, RCC-B) on transfusion regime were compared in a non-blinded, prospective, randomized, two-period, and crossover clinical trial. RCC-A was obtained by whole blood leukoreduction and subsequent plasma removal, RCC-B removing plasma and buffy coat first, followed by leukoreduction. Eligible patients were adult, with transfusion-dependent thalassemia (TDT). RESULTS RCC-A contained 63.9 (60.3-67.8) grams of hemoglobin per unit (median with 1st and 3rd quartile), RCC-B 54.5 (51.0-58.2) g/unit. Fifty-one patients completed the study. With RCC-B, the average pre-transfusion hemoglobin concentration was 9.3 ± 0.5 g/dl (mean ± SD), the average transfusion interval 14.2 (13.7-16.3) days, the number of RCC units transfused per year 39.3 (35.4-47.3), and the transfusion power index (a composite index) 258 ± 49. With RCC-A, the average pre-transfusion hemoglobin concentration was 9.6 ± 0.5 g/dl (+2.7%, effect size 0.792), the average transfusion interval 14.8 (14.0-18.5) days (+4.1%, effect size 0.800), the number of RCC units transfused per year 34.8 (32.1-42.5) (-11.4%, effect size -1.609), and the transfusion power index 272 ± 61 (+14.1%, effect size 0.997). All differences were statistically highly significant (p < .00001). The frequency of transfusion reactions was 0.59% with RCC-A and 0.56% with RCC-B (p = 1.000). CONCLUSION To reduce the number of RCC units consumed per year and the number of transfusion episodes, TDT patients should receive RCC with the highest average hemoglobin content.
Collapse
Affiliation(s)
- Maria Rita Gamberini
- Day Hospital Thalassemia and HemoglobinopathiesAzienda Ospedaliera UniversitariaFerraraItaly
| | - Monica Fortini
- Day Hospital Thalassemia and HemoglobinopathiesAzienda Ospedaliera UniversitariaFerraraItaly
| | - Alice Stievano
- Day Hospital Thalassemia and HemoglobinopathiesAzienda Ospedaliera UniversitariaFerraraItaly
| | | | | | | | | | - Roberta Chicchi
- Blood Transfusion ServiceAzienda USL della RomagnaCesenaItaly
| | - Rino Biguzzi
- Blood Transfusion ServiceAzienda USL della RomagnaCesenaItaly
| | - Francesco Fagnoni
- Blood Transfusion ServiceAzienda Ospedaliera UniversitariaParmaItaly
| | | | - Daniela Lasagni
- Blood Transfusion ServiceAzienda USL‐IRCCSReggio EmiliaItaly
| | | | | | - Maurizio Govoni
- Blood Transfusion ServiceAzienda Ospedaliera UniversitariaFerraraItaly
| | - Roberto Reverberi
- Blood Transfusion ServiceAzienda Ospedaliera UniversitariaFerraraItaly
| |
Collapse
|
11
|
Rapid clearance of storage-induced microerythrocytes alters transfusion recovery. Blood 2021; 137:2285-2298. [PMID: 33657208 DOI: 10.1182/blood.2020008563] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Permanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion. In healthy human volunteers, high proportion of SMEs in long-stored RBC concentrates correlated with poor transfusion recovery. When perfused through human spleen, 15% and 61% of long-stored RBCs and SMEs were cleared in 70 minutes, respectively. High initial proportion of SMEs also correlated with high retention of RBCs by perfused human spleen. In the mouse model, SMEs accumulated during storage. Transfusion of long-stored RBCs resulted in reduced posttransfusion recovery, mostly due to SME clearance. After transfusion in mice, long-stored RBCs accumulated predominantly in spleen and were ingested mainly by splenic and hepatic macrophages. In macrophage-depleted mice, splenic accumulation and SME clearance were delayed, and transfusion recovery was improved. In healthy hosts, SMEs were cleared predominantly by macrophages in spleen and liver. When this well-demarcated subpopulation of altered RBCs was abundant in RBC concentrates, transfusion recovery was diminished. SME quantification has the potential to improve blood product quality assessment. This trial was registered at www.clinicaltrials.gov as #NCT02889133.
Collapse
|
12
|
Current Understanding of the Relationship between Blood Donor Variability and Blood Component Quality. Int J Mol Sci 2021; 22:ijms22083943. [PMID: 33920459 PMCID: PMC8069744 DOI: 10.3390/ijms22083943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
While differences among donors has long challenged meeting quality standards for the production of blood components for transfusion, only recently has the molecular basis for many of these differences become understood. This review article will examine our current understanding of the molecular differences that impact the quality of red blood cells (RBC), platelets, and plasma components. Factors affecting RBC quality include cytoskeletal elements and membrane proteins associated with the oxidative response as well as known enzyme polymorphisms and hemoglobin variants. Donor age and health status may also be important. Platelet quality is impacted by variables that are less well understood, but that include platelet storage sensitive metabolic parameters, responsiveness to agonists accumulating in storage containers and factors affecting the maintenance of pH. An increased understanding of these variables can be used to improve the quality of blood components for transfusion by using donor management algorithms based on a donors individual molecular and genetic profile.
Collapse
|
13
|
Roubinian NH, Kanias T. Blood donor component-recipient linkages: is there fire where there is smoke? Transfusion 2020; 59:2485-2488. [PMID: 31374151 DOI: 10.1111/trf.15450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Nareg H Roubinian
- Kaiser Permanente Northern California Division of Research, Oakland, California.,Vitalant Research Institute, San Francisco, California.,University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
14
|
Garraud O. The complexity of setting up clinical trials for the transfusion support of myelodysplastic syndromes: How to best serve the patients' interests? Transfus Apher Sci 2020; 59:102750. [PMID: 32144031 DOI: 10.1016/j.transci.2020.102750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
|
16
|
Roubinian N, Kleinman S, Murphy EL, Glynn SA, Edgren G. Methodological considerations for linked blood donor-component-recipient analyses in transfusion medicine research. ACTA ACUST UNITED AC 2019; 15:185-193. [PMID: 32368251 DOI: 10.1111/voxs.12518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent years, there has been a concerted effort to improve our understanding of the quality and effectiveness of transfused blood components. The expanding use of large datasets built from electronic health records allows the investigation of potential benefits or adverse outcomes associated with transfusion therapy. Together with data collected on blood donors and components, these datasets permit an evaluation of associations between donor or blood component factors and transfusion recipient outcomes. Large linked donor-component recipient datasets provide the power to study exposures relevant to transfusion efficacy and safety, many of which would not otherwise be amenable to study for practical or sample size reasons. Analyses of these large blood banking-transfusion medicine datasets allow for characterization of the populations under study and provide an evidence base for future clinical studies. Knowledge generated from linked analyses have the potential to change the way donors are selected and how components are processed, stored and allocated. However, unrecognized confounding and biased statistical methods continue to be limitations in the study of transfusion exposures and patient outcomes. Results of observational studies of blood donor demographics, storage age, and transfusion practice have been conflicting. This review will summarize statistical and methodological challenges in the analysis of linked blood donor, component, and transfusion recipient outcomes.
Collapse
Affiliation(s)
- Nareg Roubinian
- Kaiser Permanente Northern California Division of Research, Oakland, California.,Vitalant Research Institute, San Francisco, California.,University of California, San Francisco, San Francisco, California
| | | | - Edward L Murphy
- University of California, San Francisco, San Francisco, California.,Vitalant Research Institute, San Francisco, California
| | - Simone A Glynn
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Gustaf Edgren
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
17
|
Effect of donor, component, and recipient characteristics on hemoglobin increments following red blood cell transfusion. Blood 2019; 134:1003-1013. [PMID: 31350268 DOI: 10.1182/blood.2019000773] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/17/2019] [Indexed: 01/28/2023] Open
Abstract
Significant research has focused individually on blood donors, product preparation and storage, and optimal transfusion practice. To better understand the interplay between these factors on measures of red blood cell (RBC) transfusion efficacy, we conducted a linked analysis of blood donor and component data with patients who received single-unit RBC transfusions between 2008 and 2016. Hemoglobin levels before and after RBC transfusions and at 24- and 48-hour intervals after transfusion were analyzed. Generalized estimating equation linear regression models were fit to examine hemoglobin increments after RBC transfusion adjusting for donor and recipient demographic characteristics, collection method, additive solution, gamma irradiation, and storage duration. We linked data on 23 194 transfusion recipients who received one or more single-unit RBC transfusions (n = 38 019 units) to donor demographic and component characteristics. Donor and recipient sex, Rh-D status, collection method, gamma irradiation, recipient age and body mass index, and pretransfusion hemoglobin levels were significant predictors of hemoglobin increments in univariate and multivariable analyses (P < .01). For hemoglobin increments 24 hours after transfusion, the coefficient of determination for the generalized estimating equation models was 0.25, with an estimated correlation between actual and predicted values of 0.5. Collectively, blood donor demographic characteristics, collection and processing methods, and recipient characteristics accounted for significant variation in hemoglobin increments related to RBC transfusion. Multivariable modeling allows the prediction of changes in hemoglobin using donor-, component-, and patient-level characteristics. Accounting for these factors will be critical for future analyses of donor and component factors, including genetic polymorphisms, on posttransfusion increments and other patient outcomes.
Collapse
|
18
|
Kanias T, Busch MP. Diversity in a blood bag: application of omics technologies to inform precision Transfusion Medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:258-262. [PMID: 31184580 PMCID: PMC6683866 DOI: 10.2450/2019.0056-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tamir Kanias
- Vitalant Research Institute, Denver, CO, United States of America
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States of America
| |
Collapse
|