1
|
Rabcuka J, Smethurst PA, Dammert K, Saker J, Aran G, Walsh GM, Tan JCG, Codinach M, McTaggart K, Marks DC, Bakker SJL, McMahon A, Di Angelantonio E, Roberts DJ, Blonski S, Korczyk PM, Shirakami A, Cardigan R, Swietach P. Assessing the kinetics of oxygen-unloading from red cells using FlowScore, a flow-cytometric proxy of the functional quality of blood. EBioMedicine 2025; 111:105498. [PMID: 39674089 PMCID: PMC11730303 DOI: 10.1016/j.ebiom.2024.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Metrics evaluating the functional quality of red blood cells (RBCs) must consider their role in oxygen delivery. Whereas oxygen-carrying capacity is routinely reported using haemoglobin assays, the rate of oxygen exchange is not measured, yet also important for tissue oxygenation. Since oxygen-unloading depends on the diffusion pathlength inside RBCs, cell geometry offers a plausible surrogate. METHODS We related the time-constant of oxygen-unloading (τ), measured using single-cell oxygen saturation imaging, with flow-cytometric variables recorded on a haematology analyser. Experiments compared freshly-drawn RBCs with stored RBCs, wherein metabolic run-down and spherical remodelling hinder oxygen unloading. FINDINGS Multivariable regression related τ to a ratio of side- and forward-scatter, referred to herein as FlowScore. FlowScore was able to distinguish, with sensitivity and specificity >80%, freshly drawn blood from blood that underwent storage-related kinetic attrition in O2-handling. Moreover, FlowScore predicted τ restoration upon biochemical rejuvenation of stored blood. Since RBC geometry and metabolic state are related, variants of FlowScore estimated [ATP] and [2,3-diphosphoglycerate]. The veracity of FlowScore was confirmed by four blood-banking systems (Australia, Canada, England, Spain). Applying FlowScore to data from the COMPARE study revealed a positive association with the time-delay from sample collection to measurement, which was verified experimentally. The LifeLines dataset revealed age, sex, and smoking among factors affecting FlowScore. INTERPRETATION We establish FlowScore as a widely-accessible and cost-effective surrogate of RBC oxygen-unloading kinetics. As a metric of a cellular process that is sensitive to storage and disease, we propose FlowScore as an RBC quality marker for blood-banking and haematology. FUNDING See Acknowledgements.
Collapse
Affiliation(s)
- Julija Rabcuka
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Peter A Smethurst
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | | | - Jarob Saker
- Sysmex Europe SE, Bornbarch 1, Norderstedt, 22848, Germany
| | - Gemma Aran
- Cell Laboratory, Banc de Sang i Teixits, Barcelona, Spain
| | - Geraldine M Walsh
- Product and Process Development, Canadian Blood Services, Vancouver, Canada
| | - Joanne C G Tan
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Margarita Codinach
- Cell Laboratory, Banc de Sang i Teixits, Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ken McTaggart
- Product and Process Development, Canadian Blood Services, Ottawa, Canada
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Amy McMahon
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, UK; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, UK; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; Health Data Science Research Centre, Human Technopole, Milan, Italy
| | - David J Roberts
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Slawomir Blonski
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
| | - Piotr M Korczyk
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
| | | | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK; Department of Haematology, University of Cambridge, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Wise TJ, Ott ME, Joseph MS, Welsby IJ, Darrow CC, McMahon TJ. Modulation of the allosteric and vasoregulatory arms of erythrocytic oxygen transport. Front Physiol 2024; 15:1394650. [PMID: 38915775 PMCID: PMC11194670 DOI: 10.3389/fphys.2024.1394650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 06/26/2024] Open
Abstract
Efficient distribution of oxygen (O2) to the tissues in mammals depends on the evolved ability of red blood cell (RBC) hemoglobin (Hb) to sense not only O2 levels, but metabolic cues such as pH, PCO2, and organic phosphates, and then dispense or take up oxygen accordingly. O2 delivery is the product of not only oxygen release from RBCs, but also blood flow, which itself is also governed by vasoactive molecular mediators exported by RBCs. These vascular signals, including ATP and S-nitrosothiols (SNOs) are produced and exported as a function of the oxygen and metabolic milieu, and then fine-tune peripheral metabolism through context-sensitive vasoregulation. Emerging and repurposed RBC-oriented therapeutics can modulate either or both of these allosteric and vasoregulatory activities, with a single molecule or other intervention influencing both arms of O2 transport in some cases. For example, organic phosphate repletion of stored RBCs boosts the negative allosteric effector 2,3 biphosphoglycerate (BPG) as well as the anti-adhesive molecule ATP. In sickle cell disease, aromatic aldehydes such as voxelotor can disfavor sickling by increasing O2 affinity, and in newer generations, these molecules have been coupled to vasoactive nitric oxide (NO)-releasing adducts. Activation of RBC pyruvate kinase also promotes a left shift in oxygen binding by consuming and lowering BPG, while increasing the ATP available for cell health and export on demand. Further translational and clinical investigation of these novel allosteric and/or vasoregulatory approaches to modulating O2 transport are expected to yield new insights and improve the ability to correct or compensate for anemia and other O2 delivery deficits.
Collapse
Affiliation(s)
- Thomas J. Wise
- Duke University School of Medicine, Durham, NC, United States
| | - Maura E. Ott
- Duke University School of Medicine, Durham, NC, United States
| | - Mahalah S. Joseph
- Duke University School of Medicine, Durham, NC, United States
- Florida International University School of Medicine, Miami, FL, United States
| | - Ian J. Welsby
- Duke University School of Medicine, Durham, NC, United States
| | - Cole C. Darrow
- Duke University School of Medicine, Durham, NC, United States
| | - Tim J. McMahon
- Duke University School of Medicine, Durham, NC, United States
- Durham VA Health Care System, Durham, NC, United States
| |
Collapse
|
3
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
4
|
Bicudo E, Brass I. Institutional and infrastructure challenges for hospitals producing advanced therapies in the UK: the concept of 'point-of-care manufacturing readiness'. Regen Med 2022; 17:719-737. [PMID: 36065826 DOI: 10.2217/rme-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To propose the concept of point-of-care manufacturing readiness for analyzing the capacity that a country, a health system or an institution has developed to manufacture therapies in clinical settings (point-of-care manufacture). The focus is on advanced therapies (cell, gene and tissue engineering therapies) in the UK. Materials & methods: Literature review, analysis of quantitative data, and qualitative interviews with professionals and practitioners developing and administering advanced therapies. Results: Three components of point-of-care manufacturing readiness are analyzed staff and institutional procedures, infrastructure, and relations between hospitals and service providers. Conclusion: The technical and regulatory experience that has been gained through manufacturing advanced therapies at small scale in hospitals qualifies the UK for more complex and larger-scale production of therapies in the future.
Collapse
Affiliation(s)
- Edison Bicudo
- Department of Science, Technology, Engineering, & Public Policy, University College London, Shropshire House (4th Floor), 11-20 Capper Street, London, WC1E 6JA, UK
| | - Irina Brass
- Department of Science, Technology, Engineering, & Public Policy, University College London, Shropshire House (4th Floor), 11-20 Capper Street, London, WC1E 6JA, UK
| |
Collapse
|
5
|
Zhou FQ. Pyruvate as a Potential Beneficial Anion in Resuscitation Fluids. Front Med (Lausanne) 2022; 9:905978. [PMID: 35991638 PMCID: PMC9382911 DOI: 10.3389/fmed.2022.905978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
There have been ongoing debates about resuscitation fluids because each of the current fluids has its own disadvantages. The debates essentially reflect an embarrassing clinical status quo that all fluids are not quite ideal in most clinical settings. Therefore, a novel fluid that overcomes the limitations of most fluids is necessary for most patients, particularly diabetic and older patients. Pyruvate is a natural potent antioxidant/nitrosative and anti-inflammatory agent. Exogenous pyruvate as an alkalizer can increase cellular hypoxia and anoxia tolerance with the preservation of classic glycolytic pathways and the reactivation of pyruvate dehydrogenase activity to promote oxidative metabolism and reverse the Warburg effect, robustly preventing and treating hypoxic lactic acidosis, which is one of the fatal complications in critically ill patients. In animal studies and clinical reports, pyruvate has been shown to play a protective role in multi-organ functions, especially the heart, brain, kidney, and intestine, demonstrating a great potential to improve patient survival. Pyruvate-enriched fluids including crystalloids and colloids and oral rehydration solution (ORS) may be ideal due to the unique beneficial properties of pyruvate relative to anions in contemporary existing fluids, such as acetate, bicarbonate, chloride, citrate, lactate, and even malate. Preclinical studies have demonstrated that pyruvate-enriched saline is superior to 0.9% sodium chloride. Moreover, pyruvate-enriched Ringer’s solution is advantageous over lactated Ringer’s solution. Furthermore, pyruvate as a carrier in colloids, such as hydroxyethyl starch 130/0.4, is more beneficial than its commercial counterparts. Similarly, pyruvate-enriched ORS is more favorable than WHO-ORS in organ protection and shock resuscitation. It is critical that pay attention first to improving abnormal saline with pyruvate for ICU patients. Many clinical trials with a high dose of intravenous or oral pyruvate were conducted over the past half century, and results indicated its effectiveness and safety in humans. The long-term instability of pyruvate aqueous solutions and para-pyruvate cytotoxicity is not a barrier to the pharmaceutical manufacturing of pyruvate-enriched fluids for ICU patients. Clinical trials with sodium pyruvate-enriched solutions are urgently warranted.
Collapse
|
6
|
Donovan K, Meli A, Cendali F, Park KC, Cardigan R, Stanworth S, McKechnie S, D’Alessandro A, Smethurst PA, Swietach P. Stored blood has compromised oxygen unloading kinetics that can be normalized with rejuvenation and predicted from corpuscular side-scatter. Haematologica 2021; 107:298-302. [PMID: 34498445 PMCID: PMC8719080 DOI: 10.3324/haematol.2021.279296] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Killian Donovan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Athinoula Meli
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kyung Chan Park
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Simon Stanworth
- Transfusion Medicine, NHS Blood and Transplant, Oxford, UK,Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK,Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Stuart McKechnie
- Adult Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter A. Smethurst
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK,PAWEL SWIETACH -
| |
Collapse
|
7
|
Marin M, Roussel C, Dussiot M, Ndour PA, Hermine O, Colin Y, Gray A, Landrigan M, Le Van Kim C, Buffet PA, Amireault P. Metabolic rejuvenation upgrades circulatory functions of red blood cells stored under blood bank conditions. Transfusion 2020; 61:903-918. [PMID: 33381865 DOI: 10.1111/trf.16245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Red blood cells (RBC) change upon hypothermic conservation, and storage for 6 weeks is associated with the short-term clearance of 15% to 20% of transfused RBCs. Metabolic rejuvenation applied to RBCs before transfusion replenishes energetic sources and reverses most storage-related alterations, but how it impacts RBC circulatory functions has not been fully elucidated. STUDY DESIGN AND METHODS Six RBC units stored under blood bank conditions were analyzed weekly for 6 weeks and rejuvenated on Day 42 with an adenine-inosine-rich solution. Impact of storage and rejuvenation on adenosine triphosphate (ATP) levels, morphology, accumulation of storage-induced microerythrocytes (SMEs), elongation under an osmotic gradient (by LORRCA), hemolysis, and phosphatidylserine (PS) exposure was evaluated. The impact of rejuvenation on filterability and adhesive properties of stored RBCs was also assessed. RESULTS Rejuvenation of RBCs restored intracellular ATP to almost normal levels and decreased the PS exposure from 2.78% to 0.41%. Upon rejuvenation, the proportion of SME dropped from 28.2% to 9.5%, while the proportion of normal-shaped RBCs (discocytes and echinocytes 1) increased from 47.7% to 67.1%. In LORCCA experiments, rejuvenation did not modify the capacity of RBCs to elongate and induced a reduction in cell volume. In functional tests, rejuvenation increased RBC filterability in a biomimetic splenic filter (+16%) and prevented their adhesion to endothelial cells (-87%). CONCLUSION Rejuvenation reduces the proportion of morphologically altered and adhesive RBCs that accumulate during storage. Along with the improvement in their filterability, these data show that rejuvenation improves RBC properties related to their capacity to persist in circulation after transfusion.
Collapse
Affiliation(s)
- Mickaël Marin
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Camille Roussel
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, U1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, Paris, France
| | - Michael Dussiot
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, U1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, Paris, France
| | - Papa A Ndour
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Olivier Hermine
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, U1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, Paris, France.,Assistance publique des hôpitaux de Paris, Paris, France
| | - Yves Colin
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Alan Gray
- Citra labs, a Zimmer Biomet company, Braintree, Massachusetts, USA
| | - Matt Landrigan
- Zimmer Biomet Southwest Ohio, Braintree, Massachusetts, USA
| | - Caroline Le Van Kim
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Pierre A Buffet
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Assistance publique des hôpitaux de Paris, Paris, France
| | - Pascal Amireault
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, U1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, Paris, France
| |
Collapse
|
8
|
Roch A, Magon NJ, Maire J, Suarna C, Ayer A, Waldvogel S, Imhof BA, Koury MJ, Stocker R, Schapira M. Transition to 37°C reveals importance of NADPH in mitigating oxidative stress in stored RBCs. JCI Insight 2019; 4:126376. [PMID: 31581149 DOI: 10.1172/jci.insight.126376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/25/2019] [Indexed: 01/14/2023] Open
Abstract
The RBC storage lesion is a multiparametric response that occurs during storage at 4°C, but its impact on transfused patients remains unclear. In studies of the RBC storage lesion, the temperature transition from cold storage to normal body temperature that occurs during transfusion has received limited attention. We hypothesized that multiple deleterious events might occur in this period of increasing temperature. We show dramatic alterations in several properties of therapeutic blood units stored at 4°C after warming them to normal body temperature (37°C), as well as febrile temperature (40°C). In particular, the intracellular content and redox state of NADP(H) were directly affected by post-storage incubation at 37°C, as well as by pro-oxidant storage conditions. Modulation of the NADPH-producing pentose phosphate pathway, but not the prevention of hemoglobin autoxidation by conversion of oxyhemoglobin to carboxyhemoglobin, provided protection against storage-induced alterations in RBCs, demonstrating the central role of NADPH in mitigating increased susceptibility of stored RBCs to oxidative stress. We propose that assessing RBC oxidative status after restoration of body temperature constitutes a sensitive method for detecting storage-related alterations that has the potential to improve the quality of stored RBCs for transfusion.
Collapse
Affiliation(s)
- Aline Roch
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Nicholas J Magon
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Jessica Maire
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Cacang Suarna
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales, Australia
| | - Sophie Waldvogel
- Centre de Transfusion Sanguine, University Hospitals, University of Geneva, Geneva, Switzerland
| | - Beat A Imhof
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Mark J Koury
- Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales, Australia
| | | |
Collapse
|