1
|
Fang X, Mo C, Zheng L, Gao F, Xue F, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413364. [PMID: 39836498 PMCID: PMC11923913 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fei Gao
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fu‐Shan Xue
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Xiaochun Zheng
- Department of AnesthesiologyFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical CenterFujian Provincial Key Laboratory of Emergency MedicineFujian Provincial Key Laboratory of Critical MedicineFujian Provincial Co‐constructed Laboratory of “Belt and Road,”FuzhouFujianChina
| |
Collapse
|
2
|
Kapur R. Key features of the underlying pathophysiology of Transfusion-related acute lung injury. Expert Rev Hematol 2025; 18:57-64. [PMID: 39610313 DOI: 10.1080/17474086.2024.2436972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Transfusion-related acute lung injury (TRALI) remains a leading cause of blood transfusion associated mortality, particularly in the intensive care unit. TRALI is underrecognized, underreported and lacks specific biomarkers and clinical therapies. AREAS COVERED In this review, the focus will be on the key pathophysiological features of TRALI. This will include the latest insights into the critical importance of complement (in contrast to Fcγ-receptors; FcγRs) as a driver of TRALI, and the role of recipient immune cells such as neutrophils and macrophages, and also the contribution of the pulmonary endothelium. EXPERT OPINION Increased efforts are needed to stimulate active reporting of TRALI cases. More research into the immuno-cellular pathophysiology of TRALI is required, including the role of the pulmonary endothelium. Heterogeneity in the underlying clinical condition and the different transfusion triggers should be taken into consideration. This will aid in the search for novel biomarkers and therapeutic modalities. At the moment, the most promising potential therapeutic strategies appear to be administration of interleukin (IL)-10, inhibition of complement activation and blockade of Osteopontin (OPN). Follow-up investigations are, however, highly warranted which should pave the way for multicenter international clinical trials, in order to battle the mortality due to TRALI.
Collapse
Affiliation(s)
- Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Gong C, Ma J, Deng Y, Liu Q, Zhan Z, Gan H, Xiang X, Zhang M, Cao K, Shen T, Fang L, Shen B, Shen S, Ding S. S100A9 -/- alleviates LPS-induced acute lung injury by regulating M1 macrophage polarization and inhibiting pyroptosis via the TLR4/MyD88/NFκB signaling axis. Biomed Pharmacother 2024; 172:116233. [PMID: 38308971 DOI: 10.1016/j.biopha.2024.116233] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Acute lung injury (ALI) is characterized by pulmonary diffusion abnormalities that may progress to multiple-organ failure in severe cases. There are limited effective treatments for ALI, which makes the search for new therapeutic avenues critically important. Macrophages play a pivotal role in the pathogenesis of ALI. The degree of macrophage polarization is closely related to the severity and prognosis of ALI, and S100A9 promotes M1 polarization of macrophages. The present study assessed the effects of S100A9-gene deficiency on macrophage polarization and acute lung injury. Our cohort study showed that plasma S100A8/A9 levels had significant diagnostic value for pediatric pneumonia and primarily correlated with monocyte-macrophages and neutrophils. We established a lipopolysaccharide (LPS)-induced mouse model of acute lung injury and demonstrated that knockout of the S100A9 gene mitigated inflammation by suppressing the secretion of pro-inflammatory cytokines, reducing the number of inflammatory cells in the bronchoalveolar lavage fluid, and inhibiting cell apoptosis, which ameliorated acute lung injury in mice. The in vitro and in vivo mechanistic studies demonstrated that S100A9-gene deficiency inhibited macrophage M1 polarization and reduced the levels of pulmonary macrophage chemotactic factors and inflammatory cytokines by suppressing the TLR4/MyD88/NF-κB signaling pathway and reversing the expression of the NLRP3 pyroptosis pathway, which reduced cell death. In conclusion, S100A9-gene deficiency alleviated LPS-induced acute lung injury by inhibiting macrophage M1 polarization and pyroptosis via the TLR4/MyD88/NFκB pathway, which suggests a potential therapeutic strategy for the treatment of ALI.
Collapse
Affiliation(s)
- Chen Gong
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Ji Ma
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Ya Deng
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Qiaoling Liu
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Zixiang Zhan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Hong Gan
- School of Public Health, Anhui Medical University, 230022 Hefei, Anhui, China
| | - Xinjian Xiang
- The Second Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Meng Zhang
- The Second Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Kangli Cao
- The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Tingting Shen
- The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Lulu Fang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, 230022 Hefei, Anhui, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Re-search in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China.
| | - Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230022 Hefei, Anhui, China.
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; National Clinical Research Center for Respiratory Disease, 230022 Hefei, Anhui, China.
| |
Collapse
|
4
|
van der Velden S, van Osch TLJ, Seghier A, Bentlage AEH, Mok JY, Geerdes DM, van Esch WJE, Pouw RB, Brouwer MC, Jongerius I, de Haas M, Porcelijn L, van der Schoot CE, Vidarsson G, Kapur R. Complement activation drives antibody-mediated transfusion-related acute lung injury via macrophage trafficking and formation of NETs. Blood 2024; 143:79-91. [PMID: 37801721 DOI: 10.1182/blood.2023020484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023] Open
Abstract
ABSTRACT Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion-related fatalities and, to date, is without available therapies. Here, we investigated the role of the complement system in TRALI. Murine anti-major histocompatibility complex class I antibodies were used in TRALI mouse models, in combination with analyses of plasma samples from patients with TRALI. We found that in vitro complement activation was related to in vivo antibody-mediated TRALI induction, which was correlated with increased macrophage trafficking from the lungs to the blood in a fragment crystallizable region (Fc)-dependent manner and that this was dependent on C5. Human immunoglobulin G 1 variants of the murine TRALI-inducing antibody 34-1-2S, either unable to activate complement and/or bind to Fcγ receptors (FcγRs), revealed an essential role for the complement system, but not for FcγRs, in the onset of 34-1-2S-mediated TRALI in mice. In addition, we found high levels of complement activation in the plasma of patients with TRALI (n = 53), which correlated with elevated neutrophil extracellular trap (NET) markers. In vitro we found that NETs could be formed in a murine, 2-hit model, mimicking TRALI with lipopolysaccharide and C5a stimulation. Collectively, this reveals a critical role of Fc-mediated complement activation in TRALI, with a direct relation to macrophage trafficking from the lungs to the blood and an association with NET formation, suggesting that targeting the complement system may be an attractive therapeutic approach for combating TRALI.
Collapse
Affiliation(s)
- Saskia van der Velden
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thijs L J van Osch
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Amina Seghier
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Juk Yee Mok
- Sanquin Reagents, Amsterdam, The Netherlands
| | | | | | - Richard B Pouw
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | - Masja de Haas
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, The Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, The Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Liu Y, Wang R, Song C, Ding S, Zuo Y, Yi K, Li N, Wang B, Geng Q. Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury. Front Immunol 2023; 14:1324021. [PMID: 38162674 PMCID: PMC10755469 DOI: 10.3389/fimmu.2023.1324021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-associated death, occurring during or within 6 hours after transfusion. Reports indicate that TRALI can be categorized as having or lacking acute respiratory distress syndrome (ARDS) risk factors. There are two types of TRALI in terms of its pathogenesis: antibody-mediated and non-antibody-mediated. The key initiation steps involve the priming and activation of neutrophils, with neutrophil extracellular traps (NETs) being established as effector molecules formed by activated neutrophils in response to various stimuli. These NETs contribute to the production and release of reactive oxygen species (ROS) and participate in the destruction of pulmonary vascular endothelial cells. The significant role of NETs in TRALI is well recognized, offering a potential pathway for TRALI treatment. Moreover, platelets, macrophages, endothelial cells, and complements have been identified as promoters of NET formation. Concurrently, studies have demonstrated that the storage of platelets and concentrated red blood cells (RBC) can induce TRALI through bioactive lipids. In this article, recent clinical and pre-clinical studies on the pathophysiology and pathogenesis of TRALI are reviewed to further illuminate the mechanism through which NETs induce TRALI. This review aims to propose new therapeutic strategies for TRALI, with the hope of effectively improving its poor prognosis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Peng Y, Li Y, Yang Y, Shi T, Liu R, Luan Y, Yin C. The Role and Potential Regulatory Mechanism of STING Modulated Macrophage Apoptosis and Differentiation in Severe Acute Pancreatitis-Associated Lung Injury. J Interferon Cytokine Res 2023; 43:455-468. [PMID: 37819622 DOI: 10.1089/jir.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
This study aims to investigate the role of STING in promoting macrophage apoptosis and regulating macrophage polarization in severe acute pancreatitis (SAP)-associated lung injury in vitro and in vivo. A murine model was established by intraperitoneal injection of caerulein and lipopolysaccharide (LPS). Meanwhile, ANA-1 cells were stimulated with LPS to induce apoptosis in vitro. More primary alveolar macrophages underwent apoptosis and M1 macrophage polarization in the SAP group compared with the control group, which was reversed by inhibiting STING. When ANA-1 cells were induced into M2-type macrophages, the reduction of M1 macrophage markers was accompanied by a decrease of LPS-induced apoptosis. Finally, the inhibitory effect of C-176 on STING ameliorates lung injury and inflammation by adjusting macrophage polarization and rescuing apoptosis. Therefore, inhibiting STING could be a new therapeutic strategy for treating acute pancreatitis-associated lung injury.
Collapse
Affiliation(s)
- Yiqiu Peng
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yuxi Yang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tingjuan Shi
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingyi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
7
|
Yu Y, Lian Z. Update on transfusion-related acute lung injury: an overview of its pathogenesis and management. Front Immunol 2023; 14:1175387. [PMID: 37251400 PMCID: PMC10213666 DOI: 10.3389/fimmu.2023.1175387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Transfusion-related acute lung injury (TRALI) is a severe adverse event and a leading cause of transfusion-associated death. Its poor associated prognosis is due, in large part, to the current dearth of effective therapeutic strategies. Hence, an urgent need exists for effective management strategies for the prevention and treatment of associated lung edema. Recently, various preclinical and clinical studies have advanced the current knowledge regarding TRALI pathogenesis. In fact, the application of this knowledge to patient management has successfully decreased TRALI-associated morbidity. This article reviews the most relevant data and recent progress related to TRALI pathogenesis. Based on the existing two-hit theory, a novel three-step pathogenesis model composed of a priming step, pulmonary reaction, and effector phase is postulated to explain the process of TRALI. TRALI pathogenesis stage-specific management strategies based on clinical studies and preclinical models are summarized with an explication of their models of prevention and experimental drugs. The primary aim of this review is to provide useful insights regarding the underlying pathogenesis of TRALI to inform the development of preventive or therapeutic alternatives.
Collapse
Affiliation(s)
| | - Zhengqiu Lian
- Department of Blood Transfusion, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
8
|
Yuan X, Jiang P, Qiao C, Su N, Sun P, Lin F, Li C. PLATELET SUPPRESSION BY TIROFIBAN AMELIORATES PULMONARY COAGULATION AND FIBRINOLYSIS ABNORMALITIES IN THE LUNGS OF MOUSE ANTIBODY-MEDIATED TRANSFUSION-RELATED ACUTE LUNG INJURY. Shock 2023; 59:603-611. [PMID: 36640155 DOI: 10.1097/shk.0000000000002080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ABSTRACT This study aimed to explore the ameliorating effects of the platelet surface glycoprotein IIb/IIIa receptor antagonist tirofiban on coagulation and fibrinolytic abnormalities in a mouse model of antibody-mediated transfusion-associated acute lung injury (ALI). This is important because ALI is a major cause of death attributable to the occurrence of adverse transfusion reactions. No information on a definite diagnosis or pathological mechanism exists, and targeted treatment options are not available. In this study, wild-type male Balb/c mice aged 8 to 10 weeks were randomly divided into the TRALI model, blank control, tirofiban intervention, and isotype control groups. After different treatment exposures, the mice were observed for 2 h before being killed, and lung tissue samples were collected. To explore the intervention effect of tirofiban, the degree of lung injury was quantified by estimating the lung wet/dry ratio, rectal temperature, survival rate, total protein, and myeloperoxidase and via hematoxylin-eosin staining. Furthermore, the coagulation, anticoagulation, and fibrinolysis assays were measured by automatic coagulation instrument and enzyme-linked immunosorbent assay kits, and the fluorescence densities of platelets and fibrin were quantified using immunofluorescence to analyze the effects of tirofiban on the platelet and fibrin interactions of TRALI. Compared with the TRALI model group, the lung injury indices in the tirofiban intervention group decreased significantly, and survival rates also improved. Furthermore, the level of coagulation and fibrinolytic abnormalities were obviously lower than those in the TRALI model group. In conclusion, our findings suggest that tirofiban might interfere with TRALI by inhibiting platelet activation and improving coagulation and fibrinolytic abnormalities.
Collapse
Affiliation(s)
- Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu J, Xing F, Fu Q, He B, Jia Z, Du J, Li Y, Zhang X, Chen X. hUC-MSCs exosomal miR-451 alleviated acute lung injury by modulating macrophage M2 polarization via regulating MIF-PI3K-AKT signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2819-2831. [PMID: 35997581 DOI: 10.1002/tox.23639] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In the previous study, we have proved that exosomal miR-451 from human umbilical cord mesenchymal stem cells (hUC-MSCs) attenuated burn-induced acute lung injury (ALI). However, the mechanism of exosomal miR-451 in ALI remains unclear. Therefore, this study aimed to study the molecular mechanism of hUC-MSCs-derived exosomal miR-451 on ALI by regulating macrophage polarization. Exosomes were isolated and identified by transmission electron microscope (TEM) and nanoparticle tracking analysis (NTA). The expression of miR-451, macrophage migration inhibitory factor (MIF) and PI3K/AKT signaling pathway proteins were detected by qRT-PCR and western blot. Flow cytometry was used to detect the CD80 and CD206 positive cells. Severe burn rat model was established and HE was used to detect the inflammatory cell infiltration and inflammatory injury. Dual luciferase reporter system was used to detect the regulation of miR-451 to MIF. The contents of cytokines were detected by ELISA. The results showed that hUC-MSCs exosomes promoted macrophage M1 to M2 polarization. Furthermore, hUC-MSCs-derived exosomal miR-451 alleviated ALI development and promoted macrophage M1 to M2 polarization. Moreover, MIF was a direct target of miR-451. Downregulation of MIF regulated by miR-451 alleviated ALI development promoted macrophage M1 to M2 polarization. In addition, we found that MIF and hUC-MSCs-derived exosomal miR-451 participated in ALI by regulating PI3K/AKT signaling pathway. In conclusion, we indicated that hUC-MSCs-derived exosomal miR-451 alleviated ALI by modulating macrophage M2 polarization via regulating MIF-PI3K-AKT signaling pathway, which provided great scientific significance and clinical application value for the treatment of burn-induced ALI.
Collapse
Affiliation(s)
- Jisong Liu
- Department of Burn and Plastic Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China
| | - Fuxi Xing
- Department of Burn and Plastic Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China
| | - Quanyou Fu
- Department of Burn and Plastic Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China
| | - Bo He
- Department of Burn and Plastic Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China
| | - Zhigang Jia
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Juan Du
- Department of Minimally Invasive Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China
| | - Yong Li
- Department of Burn and Plastic Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China
| | - Xiangzhou Zhang
- Department of Burn and Plastic Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China
| | - Xulin Chen
- Department of Burns, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Zhou J, Li L, Qu M, Tan J, Sun G, Luo F, Zhong P, He C. Electroacupuncture pretreatment protects septic rats from acute lung injury by relieving inflammation and regulating macrophage polarization. Acupunct Med 2022:9645284221118588. [PMID: 36039902 DOI: 10.1177/09645284221118588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Macrophage polarization toward the M2 phenotype may attenuate inflammation and have a therapeutic effect in acute lung injury (ALI). OBJECTIVE To investigate the role of electroacupuncture (EA) pretreatment on the inflammatory response and macrophage polarization in a septic rat model of lipopolysaccharide (LPS)-induced ALI. METHODS Male Sprague Dawley rats (n = 24) were randomly divided into three groups (n = 8 each): control (Ctrl), ALI (LPS) and pre-EA (LPS + EA pretreatment). ALI and pre-EA rats were injected with LPS via the caudal vein. Pulmonary edema was assessed by left upper pulmonary lobe wet-to-dry (W/D) ratios. Lung injury scores were obtained from paraffin-embedded and hematoxylin and eosin-stained sections of the left lower pulmonary lobe. Inflammatory activation was quantified using serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, transforming growth factor (TGF)-β and IL-10 levels measured by enzyme linked immunosorbent assay (ELISA). Macrophage phenotype was determined by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS Mean lung W/D ratio was significantly lower and serum IL-1β levels were decreased in pre-EA rats compared to ALI rats (P < 0.05). TNF-α mRNA expression was decreased and mannose receptor (MR) and Arg1 mRNA expression was increased in the lung tissues of pre-EA rats compared to ALI rats (P < 0.01). Arg1 protein expression was similarly increased in the lung tissues of pre-EA rats compared to ALI rats (P < 0.05). CONCLUSION EA pretreatment may play a protective role by promoting macrophage polarization to the M2 phenotype in a septic rat model of LPS-induced ALI.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Mengjian Qu
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Jinqu Tan
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Guanghua Sun
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Fu Luo
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Peirui Zhong
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Li X, Wei Y, Li S, Liang J, Liu Z, Cui Y, Gao J, Yang Z, Li L, Zhou H, Chen S, Yang C. Zanubrutinib ameliorates lipopolysaccharide-induced acute lung injury via regulating macrophage polarization. Int Immunopharmacol 2022; 111:109138. [PMID: 35973369 DOI: 10.1016/j.intimp.2022.109138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a disease characterized by pulmonary diffusion dysfunction and its exacerbation stage is acute respiratory distress syndrome (ARDS), which may develop to multiple organ failure and seriously threatens human health. ALI has high mortality rates and few effective treatments, thus effective protection measures for ALI are becoming increasingly important. Macrophages play a key regulatory role in the pathogenesis of ALI, and the degree of macrophage polarization is closely related to the severity and prognosis of ALI. In this study, we evaluated the effects of Zanubrutinib (ZB), a BTK small molecule inhibitor approved by the FDA for the treatment of cell lymphoma, on macrophage polarization and acute lung injury. In the in vivo study, we constructed a mouse model of Lipopolysaccharide (LPS)-induced acute lung injury and found that ZB could improve the acute injury of mouse lungs by inhibiting the secretion of proinflammatory factors and promoting the secretion of anti-inflammatory factors, reduce the number of inflammatory cells in alveolar lavage fluid, and then alleviate the inflammatory response. In vivo and in vitro studies have shown that ZB could inhibit the M1 macrophage polarization and promote the M2 macrophage polarization. Subsequent mechanistic studies revealed that ZB could inhibit the macrophage M1 polarization via targeting BTK activation and inhibiting JAK2/STAT1 and TLR4/MyD88/NF-κB signaling pathways, and promote the macrophage M2 polarization by promoting the activation of STAT6 and PI3K / Akt signaling pathways. In summary, ZB has shown therapeutic effect in LPS-induced acute lung injury in mice, which provides a potential candidate drug to treat acute lung injury.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Yuli Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Shimeng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Jingjing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Zhichao Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Yunyao Cui
- Tianjin Jikun Technology Co., Ltd., Tianjin 301700, People's Republic of China
| | - Jingjing Gao
- Tianjin Jikun Technology Co., Ltd., Tianjin 301700, People's Republic of China
| | - Zhongyi Yang
- Tianjin Jikun Technology Co., Ltd., Tianjin 301700, People's Republic of China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, People's Republic of China
| | - Lei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, People's Republic of China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China.
| | - Shanshan Chen
- The First Affiliated Hospital of Zhengzhou University, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China.
| |
Collapse
|
12
|
Shen QY, Wang D, Xu HY, Wei CS, Xiao XY, Liu J, Shen YJ, Fang L, Feng LJ, Shen YX. Mesencephalic astrocyte-derived neurotrophic factor attenuates acute lung injury via inhibiting macrophages' activation. Biomed Pharmacother 2022; 150:112943. [PMID: 35405395 DOI: 10.1016/j.biopha.2022.112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Acute lung injury (ALI) is an urgent respiratory disease without effective treatment. Mesencephalic astrocyte-derived neurotrophic factor (MANF)has been demonstrated to play a suppressive role in some inflammatory conditions. However, the effect of MANF on ALI has not yet been reported. In this study, we collected bronchoalveolar lavage fluid (BALF) from the patients with or without pulmonary inflammation, and used lipopolysaccharide (LPS) to induce mice ALI model. Mono-macrophage-specific MANF knockout (MKO) mice were constructed and recombinant human MANF protein was used to ALI mice. We found that the endogenous MANF protein in both human BALF and mice lung tissues was increased in inflammatory conditions. MANF level in the macrophages of inflammatory lung was higher than that in normal controls in both human and mice. MANF deficiency in macrophages induced lung inflammation and aggravated LPS-induced lung injury. MANF lowered LPS-induced lung injury, inhibited macrophage polarization to M1 functional type. Meanwhile, MANF inhibited-LPS induced activation of NF-κB signal pathway by down regulating phosphorylated p65in lung tissue and macrophages. These results indicate that MANF acts as a suppressor in ALI via negatively regulating NF-κB activation and macrophages polarization, which may be a novel potential target and shed light on ALI therapy.
Collapse
Affiliation(s)
- Qi-Ying Shen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Department of Anesthesiology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Han-Yang Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Chuan-Sheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Xue-Ying Xiao
- Department of Anesthesiology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Yu-Jun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Lei Fang
- Department of Geriatric Respiratory and Critical Care, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li-Jie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China.
| |
Collapse
|
13
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
14
|
Sun S, Yao Y, Huang C, Xu H, Zhao Y, Wang Y, Zhu Y, Miao Y, Feng X, Gao X, Zheng J, Zhang Q. CD36 regulates LPS-induced acute lung injury by promoting macrophages M1 polarization. Cell Immunol 2022; 372:104475. [PMID: 35063904 DOI: 10.1016/j.cellimm.2021.104475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 01/11/2023]
|
15
|
Yu Y, Jiang P, Sun P, Su N, Lin F. Pulmonary coagulation and fibrinolysis abnormalities that favor fibrin deposition in the lungs of mouse antibody-mediated transfusion-related acute lung injury. Mol Med Rep 2021; 24:601. [PMID: 34165170 PMCID: PMC8240174 DOI: 10.3892/mmr.2021.12239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Transfusion-related acute lung injury (TRALI) is a life-threatening disease caused by blood transfusion. However, its pathogenesis is poorly understood and specific therapies are not available. Experimental and clinical studies have indicated that alveolar fibrin deposition serves a pathological role in acute lung injuries. The present study investigated whether pulmonary fibrin deposition occurs in a TRALI mouse model and the possible mechanisms underlying this deposition. The TRALI model was established by priming male Balb/c mice with lipopolysaccharide (LPS) 18 h prior to injection of an anti-major histocompatibility complex class I (MHC-I) antibody. Untreated mice and mice administered LPS plus isotype antibody served as controls. At 2 h after TRALI induction, blood and lung tissue were collected. Disease characteristics were assessed based on lung tissue histology, inflammatory responses and alterations in the alveolar-capillary barrier. Immunofluorescence staining was used to detect pulmonary fibrin deposition, platelets and fibrin-platelet interactions. Levels of plasminogen activator inhibitor-1 (PAI-1), thrombin-antithrombin complex (TATc), tissue factor pathway inhibitor (TFPI), coagulation factor activity and fibrin degradation product (FDP) in lung tissue homogenates were measured. Severe lung injury, increased inflammatory responses and a damaged alveolar-capillary barrier in the LPS-primed, anti-MHC-I antibody-administered mice indicated that the TRALI model was successfully established. Fibrin deposition, fibrin-platelet interactions and platelets accumulation in the lungs of mouse models were clearly promoted. Additionally, levels of TATc, coagulation factor V (FV), TFPI and PAI-1 were elevated, whereas FDP level was decreased in TRALI mice. In conclusion, both impaired fibrinolysis and enhanced coagulation, which might be induced by boosted FV activity, increased pulmonary platelets accumulation and enhanced fibrin-platelet interactions and contributed to pulmonary fibrin deposition in TRALI mice. The results provided a therapeutic rationale to target abnormalities in either coagulation or fibrinolysis pathways for antibody-mediated TRALI.
Collapse
Affiliation(s)
- Yunhong Yu
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The aim of this study was to discuss recent advances regarding the pathogenesis of transfusion-related acute lung injury (TRALI), which highlight the pathogenic role of macrophages. RECENT FINDINGS TRALI remains a leading cause of transfusion-related fatalities, despite the success of the mitigation strategy, and therapeutic approaches are unavailable. Neutrophils (PMNs) are recognized pathogenic cells in TRALI. Macrophages have previously also been suggested to be pathogenic in mice via binding of C5a to their C5a-receptor, producing reactive oxygen species (ROS), which damages the pulmonary endothelium. Recent work has further highlighted the role of macrophages in the TRALI-pathogenesis. It has been shown that the protein osteopontin (OPN) released by macrophages is critical for pulmonary PMN recruitment in mice suffering from TRALI and that targeting OPN prevents the occurrence of TRALI. Another recent study demonstrated the importance of M1-polarized alveolar macrophages in murine TRALI induction by showing that α1-antitrypsin (AAT) overexpression prevented TRALI in mice through decreasing the polarization of alveolar macrophages towards the M1 phenotype. SUMMARY Apart from PMNs, macrophages also appear to be important in the pathogenesis of TRALI. Targeting the pathogenic functions of macrophages may be a promising therapeutic strategy to explore in TRALI.
Collapse
|
17
|
Guo K, Ma S. The Immune System in Transfusion-Related Acute Lung Injury Prevention and Therapy: Update and Perspective. Front Mol Biosci 2021; 8:639976. [PMID: 33842545 PMCID: PMC8024523 DOI: 10.3389/fmolb.2021.639976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
As an initiator of respiratory distress, transfusion-related acute lung injury (TRALI) is regarded as one of the rare complications associated with transfusion medicine. However, to date, the pathogenesis of TRALI is still unclear, and specific therapies are unavailable. Understanding the mechanisms of TRALI may promote the design of preventive and therapeutic strategies. The immune system plays vital roles in reproduction, development and homeostasis. Sterile tissue damage, such as physical trauma, ischemia, or reperfusion injury, induces an inflammatory reaction that results in wound healing and regenerative mechanisms. In other words, in addition to protecting against pathogens, the immune response may be strongly associated with TRALI prevention and treatment through a variety of immunomodulatory strategies to inhibit excessive immune system activation. Immunotherapy based on immune cells or immunological targets may eradicate complications. For example, IL-10 therapy is a promising therapeutic strategy to explore further. This review will focus on ultramodern advances in our understanding of the potential role of the immune system in TRALI prevention and treatment.
Collapse
Affiliation(s)
- Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
18
|
Zeeuw van der Laan EA, van der Velden S, Porcelijn L, Semple JW, van der Schoot CE, Kapur R. Evaluation of Platelet Responses in Transfusion-Related Acute Lung Injury (TRALI). Transfus Med Rev 2020; 34:227-233. [PMID: 33036839 PMCID: PMC7493815 DOI: 10.1016/j.tmrv.2020.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/29/2022]
Abstract
Platelets are versatile cells which are capable of eliciting nonhemostatic immune functions, especially under inflammatory conditions. Depending on the specific setting, platelets may be either protective or pathogenic in acute lung injury and acute respiratory distress syndrome (ARDS). Their role in transfusion-related acute lung injury (TRALI) is less well defined; however, it has been hypothesized that recipient platelets and transfused platelets both play a pathogenic role in TRALI. Overall, despite conflicting findings, it appears that recipient platelets may play a pathogenic role in antibody-mediated TRALI; however, their contribution appears to be limited. It is imperative to first validate the involvement of recipient platelets by standardizing the animal models, methods, reagents, and readouts for lung injury and taking the animal housing environment into consideration. For the involvement of transfused platelets in TRALI, it appears that predominantly lipids such as ceramide in stored platelets are able to induce TRALI in animal models. These studies will also need to be validated, and moreover, the platelet-derived lipid-mediated mechanisms leading to TRALI will need to be investigated.
Collapse
Affiliation(s)
- Eveline A.N. Zeeuw van der Laan
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Saskia van der Velden
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - John W. Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - C. Ellen van der Schoot
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|