1
|
Meister TL, Frericks N, Kleinert RDV, Rodríguez E, Steinmann J, Todt D, Brown RJP, Steinmann E. Inactivation of yellow fever virus by WHO-recommended hand rub formulations and surface disinfectants. PLoS Negl Trop Dis 2024; 18:e0012264. [PMID: 38900788 PMCID: PMC11218936 DOI: 10.1371/journal.pntd.0012264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
Despite continued outbreaks of yellow fever virus (YFV) in endemic regions, data on its environmental stability or guidelines for its effective inactivation is limited. Here, we evaluated the susceptibility of the YFV 17D vaccine strain to inactivation by ethanol, 2-propanol, World Health Organization (WHO)-recommended hand rub formulations I and II, as well as surface disinfectants. In addition, two pathogenic strains were tested to compare inactivation kinetics by WHO-recommended hand rub formulations I and II. Furthermore, environmental stability of the vaccine strain was assessed. YFV 17D particles displayed infectivity half-life decay profiles of ~13 days at room temperature. Despite this extended environmental stability, YFV was efficiently inactivated by alcohols, WHO-recommended hand formulations, and four out of five tested surface disinfectants. These results are useful in defining disinfection protocols to prevent non-vector borne YFV transmission.
Collapse
Affiliation(s)
- Toni Luise Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Nicola Frericks
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | | | - Estefanía Rodríguez
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Richard J. P. Brown
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany
| |
Collapse
|
2
|
Ambardar S, Howell MC, Mayilsamy K, McGill A, Green R, Mohapatra S, Voronine DV, Mohapatra SS. Ultrafast-UV laser integrating cavity device for inactivation of SARS-CoV-2 and other viruses. Sci Rep 2022; 12:11935. [PMID: 35831374 PMCID: PMC9279343 DOI: 10.1038/s41598-022-13670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
Ultraviolet (UV) irradiation-based methods used for viral inactivation have provided an important avenue targeting severe acute respiratory-syndrome coronavirus-2 (SARS-CoV-2) virus. A major problem with state-of-the-art UV inactivation technology is that it is based on UV lamps, which have limited efficiency, require high power, large doses, and long irradiation times. These drawbacks limit the use of UV lamps in air filtering systems and other applications. To address these limitations, herein we report on the fabrication of a device comprising a pulsed nanosecond 266 nm UV laser coupled to an integrating cavity (LIC) composed of a UV reflective material, polytetrafluoroethylene. Previous UV lamp inactivation cavities were based on polished walls with specular reflections, but the diffuse reflective UV ICs were not thoroughly explored for virus inactivation. Our results show that LIC device can inactivate several respiratory viruses including SARS-CoV-2, at ~ 1 ms effective irradiation time, with > 2 orders of magnitude higher efficiency compared to UV lamps. The demonstrated 3 orders of magnitude cavity enhancement relative to direct exposure is crucial for the development of efficient real-time UV air and water purification systems. To the best of our knowledge this is the first demonstration of LIC application for broad viral inactivation with high efficiency.
Collapse
Affiliation(s)
- Sharad Ambardar
- Department of Medical Engineering, University of South Florida, USF Cherry Drive ISA 6049, Tampa, FL, 33620, USA
| | - Mark C Howell
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2511, Tampa, FL, 33612, USA
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2525, Tampa, FL, 33612, USA
| | - Andrew McGill
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2511, Tampa, FL, 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2525, Tampa, FL, 33612, USA
| | - Ryan Green
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2511, Tampa, FL, 33612, USA
| | - Subhra Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2525, Tampa, FL, 33612, USA.
| | - Dmitri V Voronine
- Department of Medical Engineering, University of South Florida, USF Cherry Drive ISA 6049, Tampa, FL, 33620, USA.
- Department of Physics, University of South Florida, Tampa, FL, 33612, USA.
| | - Shyam S Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA.
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd. MDC 2511, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Focosi D, Macera L, Spezia PG, Ceccarelli F, Lanza M, Maggi F. Molecular validation of pathogen-reduction technologies using rolling-circle amplification coupled with real-time PCR for torquetenovirus DNA quantification. Transfus Med 2021; 31:371-376. [PMID: 34390068 DOI: 10.1111/tme.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Pathogen reduction technologies (PRT) based on nucleic-acid damaging chemicals and/or irradiation are increasingly being used to increase safety of blood components against emerging pathogens, such as convalescent plasma in the ongoing COVID-19 pandemic. Current methods for PRT validation are limited by the resources available to the blood component manufacturer, and quality control rely over pathogen spiking and hence invariably require sacrifice of the tested blood units: quantitative real-time PCR is the current pathogen detection method but, due to the high likelihood of detecting nonviable fragments, requires downstream pathogen culture. We propose here a new molecular validation of PRT based on the highly prevalent human symbiont torquetenovirus (TTV) and rolling circle amplification (RCA). MATERIALS AND METHODS Serial apheresis plasma donations were tested for TTV before and after inactivation with Intercept® PRT using real-time quantitative PCR (conventional validation), RCA followed by real-time PCR (our validation), and reverse PCR (for cross-validation). RESULTS While only 20% of inactivated units showed significant decrease in TTV viral load using real-time qPCR, all donations tested with RCA followed by real-time PCR showed TTV reductions. As further validation, 2 units were additionally tested with reverse PCR, which confirmed absence of entire circular genomes. DISCUSSION We have described and validated a conservative and easy-to-setup protocol for molecular validation of PRT based on RCA and real-time PCR for TTV.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Lisa Macera
- Department of Translational Research, University of Pisa, Pisa, Italy
| | | | | | - Maria Lanza
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
4
|
Quantum Leap from Gold and Silver to Aluminum Nanoplasmonics for Enhanced Biomedical Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanotechnology has been used in many biosensing and medical applications, in the form of noble metal (gold and silver) nanoparticles and nanostructured substrates. However, the translational clinical and industrial applications still need improvements of the efficiency, selectivity, cost, toxicity, reproducibility, and morphological control at the nanoscale level. In this review, we highlight the recent progress that has been made in the replacement of expensive gold and silver metals with the less expensive aluminum. In addition to low cost, other advantages of the aluminum plasmonic nanostructures include a broad spectral range from deep UV to near IR, providing additional signal enhancement and treatment mechanisms. New synergistic treatments of bacterial infections, cancer, and coronaviruses are envisioned. Coupling with gain media and quantum optical effects improve the performance of the aluminum nanostructures beyond gold and silver.
Collapse
|
5
|
Lanteri MC, Santa-Maria F, Laughhunn A, Girard YA, Picard-Maureau M, Payrat JM, Irsch J, Stassinopoulos A, Bringmann P. Inactivation of a broad spectrum of viruses and parasites by photochemical treatment of plasma and platelets using amotosalen and ultraviolet A light. Transfusion 2020; 60:1319-1331. [PMID: 32333396 PMCID: PMC7317863 DOI: 10.1111/trf.15807] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The INTERCEPT Blood System pathogen reduction technology (PRT), which uses amotosalen and ultraviolet A light treatment (amotosalen/UV-PRT), inactivates pathogens in plasma and platelet components (PCs). This review summarizes data describing the inactivation efficacy of amotosalen/UVA-PRT for a broad spectrum of viruses and parasites. METHODS Twenty-five enveloped viruses, six nonenveloped viruses (NEVs), and four parasites species were evaluated for sensitivity to amotosalen/UVA-PRT. Pathogens were spiked into plasma and PC at high titers. Samples were collected before and after PRT and assessed for infectivity with cell cultures or animal models. Log reduction factors (LRFs) were defined as the difference in infectious titers before and after amotosalen/UV-PRT. RESULTS LRFs of ≥4.0 log were reported for 19 pathogens in plasma (range, ≥4.0 to ≥7.6), 28 pathogens in PC in platelet additive solution (PC-PAS; ≥4.1-≥7.8), and 14 pathogens in PC in 100% plasma (PC-100%; (≥4.3->8.4). Twenty-five enveloped viruses and two NEVs were sensitive to amotosalen/UV-PRT; LRF ranged from >2.9 to ≥7.6 in plasma, 2.4 or greater to greater than 6.9 in PC-PAS and >3.5 to >6.5 in PC-100%. Infectious titers for four parasites were reduced by >4.0 log in all PC and plasma (≥4.9 to >8.4). CONCLUSION Amotosalen/UVA-PRT demonstrated effective infectious titer reduction for a broad spectrum of viruses and parasites. This confirms the capacity of this system to reduce the risk of viral and parasitic transfusion-transmitted infections by plasma and PCs in various geographies.
Collapse
Affiliation(s)
- Marion C Lanteri
- Department of Scientific Affairs, Cerus Corporation, Concord, California, USA
| | | | - Andrew Laughhunn
- Department of Microbiology, Cerus Corporation, Concord, California, USA
| | - Yvette A Girard
- Department of Microbiology, Cerus Corporation, Concord, California, USA
| | | | - Jean-Marc Payrat
- Department of Scientific Affairs, Cerus Europe BV, Amersfoort, The Netherlands
| | - Johannes Irsch
- Department of Scientific Affairs, Cerus Europe BV, Amersfoort, The Netherlands
| | | | - Peter Bringmann
- Department of Microbiology, Cerus Corporation, Concord, California, USA
| |
Collapse
|