1
|
Mahajan J, Padula MP, Marks DC, Johnson L. Clot formation and resolution properties of platelets during cold storage for 21 days. Transfusion 2025. [PMID: 40377407 DOI: 10.1111/trf.18283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Cold storage (2-6°C) preserves the aggregatory and clot formation properties of platelets beyond the standard 7-day shelf life. Comparatively little is known about the effect of cold storage on clot resolution functions, which are necessary to ensure normal hemostatic balance is maintained. STUDY DESIGN AND METHODS Double-dose apheresis platelets (n = 8) were collected using the Trima apheresis platform (40% plasma/60% PAS-E). Platelets were sampled on Day 1 post-collection and allocated to room temperature (RT; 20-24°C) or cold storage (2-6°C). In vitro testing was performed over a 21-day period. RESULTS The coagulation profile of cold-stored platelets was better maintained throughout storage compared to RT platelets. Cold-stored platelets showed increased thrombin generation potential (faster lag time, higher peak, and increased ETP) compared to RT platelets throughout storage. By viscoelastic testing, the IN-test and EX-test clotting times (CT) were maintained over cold storage for 21 days, while the clot strength (MCF) decreased by approximately 15%. The lysis time (LT) was unchanged during cold storage. Macroscopically, less clot retraction and a higher percentage of internal lysis were observed in cold-stored platelets; however, susceptibility to external lysis was not affected. CONCLUSION Hemostasis requires a delicate balance between clot formation and resolution, and we have shown that the key functional properties of cold platelets stored in PAS-E are well-regulated during extended storage for 21 days.
Collapse
Affiliation(s)
- Janhavi Mahajan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Waters L, Marks DC, Johnson L. Strategies to improve platelet cryopreservation: A narrative review. Transfusion 2025; 65:740-749. [PMID: 40059666 PMCID: PMC12005584 DOI: 10.1111/trf.18204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025]
Affiliation(s)
- Lauren Waters
- Research and DevelopmentAustralian Red Cross LifebloodAlexandriaNew South WalesAustralia
| | - Denese C. Marks
- Research and DevelopmentAustralian Red Cross LifebloodAlexandriaNew South WalesAustralia
- Sydney Medical SchoolThe University of SydneyCamperdownNew South WalesAustralia
| | - Lacey Johnson
- Research and DevelopmentAustralian Red Cross LifebloodAlexandriaNew South WalesAustralia
- School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Johnson L, Lei P, Roan C, Marks DC. Development of a simplified platelet cryopreservation method: An in vitro investigation of reducing the DMSO concentration to allow administration without its pre-transfusion removal. Vox Sang 2025; 120:284-292. [PMID: 39761988 DOI: 10.1111/vox.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND AND OBJECTIVES The most widely used method of platelet cryopreservation requires the addition of 5%-6% dimethylsulphoxide (DMSO), followed by its pre-freeze removal via centrifugation, to minimize toxicity. However, this adds complexity to the pre-freeze and post-thaw processing. Accordingly, the aim of this study was to simplify platelet cryopreservation by reducing the DMSO concentration and omitting the requirement for pre-transfusion removal. MATERIALS AND METHODS Apheresis platelets were cryopreserved at -80°C according to standard blood-banking methods using 5.5% DMSO, with centrifugation, pre-freeze removal of DMSO and reconstitution in plasma following thawing (standard). In parallel, doses of DMSO (0%, 1.5%, 3%, 5.5%) were tested without centrifugation and reconstitution (no-wash). In vitro platelet quality was assessed by flow cytometry, aggregation, viscoelastic testing (thromboelastography [TEG]) and clot retraction. RESULTS Many in vitro platelet quality parameters showed DMSO dose dependency using the no-wash protocol (recovery, annexin-V, TEG maximum amplitude [MA]). Platelets frozen using the no-wash method with 3% DMSO showed a higher abundance of GPIbα (3% DMSO no-wash median fluorescence intensity [MFI]: 228 ± 16; standard MFI: 184 ± 16; p = 0.0016) and less degranulation (reduced P-selectin-positive platelets and concentration of supernatant P-selectin) than platelets frozen using the standard method. All functional properties measured were comparable to those of platelets frozen using the standard method. CONCLUSION This study shows that improvements in cryopreserved platelet quality parameters can be obtained by removing the centrifugation processes (standard vs. 5.5% DMSO no-wash). A reduction in DMSO to 3% supports quality parameters, and if shown to be clinically acceptable, this cryopreservation method could improve platelet accessibility, as it is simpler and cheaper than the standard method.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Pearl Lei
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Christopher Roan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Drossos PV, Fortis SP, Anastasiadi AT, Pavlou EG, Tsantes AG, Spyratos GA, Papageorgiou EG, Nomikou EG, Stamoulis KE, Dryllis G, Tzounakas VL, Politou M, Valsami S, Kriebardis AG. Cold vs. Room Temperature: A Comparative Analysis of Platelet Functionality in Cold Storage. Biomedicines 2025; 13:310. [PMID: 40002723 PMCID: PMC11852762 DOI: 10.3390/biomedicines13020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The platelet functionality of cold-stored platelets remains a subject of debate. Our aim was to investigate the effect of temperature on the hemostatic properties of stored platelets. Methods: Ten split pooled platelets stored at cold and at room temperature were evaluated in vitro on storage days 1, 5, 10, and 15 for metabolic, physiological, and vesiculation parameters, as well as their hemostatic profile using rotational thromboelastometry (ROTEM®). Results: The integrity profile was better preserved in the cold-stored platelets, as lower lactate dehydrogenase levels were documented (e.g., day 10: 261 ± 46 vs. 572 ± 220 U/L, 4 vs. 22 °C, p = 0.004). A time-dependent decrease in hemostatic capacity was evident regardless of the temperature, but the cold-stored units were linked to shorter clot initiation times and increased elasticity, strength, and firmness parameters, especially during extended storage (e.g., maximum clot firmness, INTEM day 15: 81 ± 2 vs. 19 ± 4 mm, 4 vs. 22 °C, p = 0.0008). Additionally, the aggregation of cold-stored platelets was superior after the addition of any agonist tested. Regarding vesiculation parameters, the extracellular vesicles of the units at 4 °C were characterized by a larger size from day 10 onwards, when they also presented higher procoagulant activity (e.g., phospholipid-dependent clotting time of day 15: 21.4 ± 2.3 vs. 25.0 ± 3.0 s, 4 vs. 22 °C, p = 0.016). Conclusion: Our results indicate that cold-stored platelets perform better than those stored at room temperature, demonstrating superior clot formation and stability. This suggests that cold storage may more effectively preserve platelet function, potentially offering advantages for transfusion therapy and the extension of shelf-life. However, the clinical relevance of these findings requires further investigation.
Collapse
Affiliation(s)
- Panagiotis V. Drossos
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Efthymia G. Pavlou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
- Blood Bank and Hemophilia Unit, Hippokration Hospital, 11527 Athens, Greece;
| | - Andreas G. Tsantes
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
- Laboratory of Haematology and Blood Bank Unit, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Gerasimos A. Spyratos
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Efrosyni G. Nomikou
- Blood Bank and Hemophilia Unit, Hippokration Hospital, 11527 Athens, Greece;
| | | | - Georgios Dryllis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Marianna Politou
- Hematology Laboratory—Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Serena Valsami
- Hematology Laboratory—Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| |
Collapse
|
5
|
Johnson L, Bryant SJ, Lei P, Roan C, Marks DC, Bryant G. A deep eutectic solvent is an effective cryoprotective agent for platelets. Cryobiology 2024; 116:104913. [PMID: 38815783 DOI: 10.1016/j.cryobiol.2024.104913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The most widely used method of platelet cryopreservation requires the addition of dimethyl sulfoxide (DMSO; Me2SO) as a cryoprotective agent (CPA) and pre-freeze removal of Me2SO before freezing to mitigate toxicity. However, alternative CPAs such as deep eutectic solvents (DES), which are less toxic could simplify this process. The aim of this study was to determine the effectiveness of a Proline-Glycerol (Prol-Gly 1:3) DES as a platelet CPA. Platelets were cryopreserved at -80 °C using 10 % Prol-Gly 1:3 (DES; n = 6), or in the absence of a cryoprotectant (no CPA; n = 6). Platelets were also cryopreserved according to the gold-standard blood-banking method using 5.5 % Me2SO (n = 6), with centrifugation and pre-freeze removal of the excess Me2SO. Platelet quality was assessed by flow cytometry and thromboelastography (TEG). Post-thaw recovery was similar between the three groups. The abundance of labile platelet glycoproteins GPIbα and GPVI were highest in the DES group, however, markers of activation (CD62P and annexin-V) were also higher in this group. In terms of function, the strength of the clot (maximum amplitude; TEG) and extent of clot retraction was better with DES platelets compared to no CPA, but lower than Me2SO platelets. DES provides a cryoprotective advantage to platelets when compared to no CPA. Importantly, when compared to Me2SO platelets, most quality parameters were similar in DES platelets. The major advantage with using a DES is biocompatibility, therefore it does not need to be removed prior to transfusion. This greatly simplifies the freezing and thawing process, avoiding the toxic effects of Me2SO.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia.
| | - Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Pearl Lei
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia
| | - Christopher Roan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| |
Collapse
|
6
|
Kwan PSL, Kirwan S, Tuinukuafe A, Morley S. Temporal dynamics of in vitro hemostatic function in platelets cryopreserved using a novel approach for rapid issuance. Transfusion 2024; 64:1287-1295. [PMID: 38752347 DOI: 10.1111/trf.17871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Current procedures for thawing and issuing of cryopreserved platelets (CPPs) are laborious and have remained challenging in emergency settings such as blood banks and military operations. In this prospective study, a novel processing method designed to facilitate the rapid issuance of CPPs with no postthaw handling required was developed and functionally characterized in parallel with standard CPPs manufactured. STUDY DESIGN AND METHODS Double-dose plateletpheresis units (n = 42) were cryopreserved at -80°C in 5%-6% dimethyl sulfoxide to produce matched pairs thawed successively over a 27-month period for comparison between two processing arms. In contrast to the standard CPPs manufactured as standalone units, platelets were frozen in tandem with resuspending plasma in a distinct partition as a single unit in the novel method, herein referred to as tandem CPPs. Postthaw (PT) CPPs from both arms were assessed at PT0-, 12-, and 24-h to measure platelet recovery, R-time (time to clot initiation; min), and maximum amplitude (MA; clot strength; mm) using thromboelastography. RESULTS In the overall dataset, mean platelet recovery was higher (p < .0005) for tandem CPPs (83.9%) compared with standard CPPs (73.3%) at PT0; mean R-times were faster (p < .0005) for tandem CPPs (2.5-3.6 min) compared with standard CPPs (3.0-3.8 min); mean MA was higher for tandem CPPs (57.8-59.5 mm) compared with standard CPPs (52.1-55.8 mm) at each postthaw time point (p < .05). CONCLUSION Robust temporal dynamics of superior hemostatic functionality were established for tandem CPPs over extended cryopreservation up to 27 months and 24 h of postthaw storage.
Collapse
Affiliation(s)
- Patrick S L Kwan
- Clinical Development, New Zealand Blood Service, Auckland, New Zealand
| | - Susy Kirwan
- Clinical Development, New Zealand Blood Service, Auckland, New Zealand
| | - Alice Tuinukuafe
- Cellular and Tissue Laboratory, New Zealand Blood Service, Auckland, New Zealand
| | - Sarah Morley
- Clinical Development, New Zealand Blood Service, Auckland, New Zealand
| |
Collapse
|
7
|
Rezvany MR, Moradi Hasan-Abad A, Sobhani-Nasab A, Esmaili MA. Evaluation of bacterial safety approaches of platelet blood concentrates: bacterial screening and pathogen reduction. Front Med (Lausanne) 2024; 11:1325602. [PMID: 38651065 PMCID: PMC11034438 DOI: 10.3389/fmed.2024.1325602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
This mini-review analyzed two approaches to screening bacterial contamination and utilizing pathogen reduction technology (PRT) for Platelet concentrates (PCs). While the culture-based method is still considered the gold standard for detecting bacterial contamination in PCs, efforts in the past two decades to minimize transfusion-transmitted bacterial infections (TTBIs) have been insufficient to eliminate this infectious threat. PRTs have emerged as a crucial tool to enhance safety and mitigate these risks. The evidence suggests that the screening strategy for bacterial contamination is more successful in ensuring PC quality, decreasing the necessity for frequent transfusions, and improving resistance to platelet transfusion. Alternatively, the PRT approach is superior regarding PC safety. However, both methods are equally effective in managing bleeding. In conclusion, PRT can become a more prevalent means of safety for PCs compared to culture-based approaches and will soon comprehensively surpass culture-based bacterial contamination detection methods.
Collapse
Affiliation(s)
- Mohammad Reza Rezvany
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- BioClinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Esmaili
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
8
|
Gavioli G, Razzoli A, Bedolla DE, Di Bartolomeo E, Quartieri E, Iotti B, Berni P, Birarda G, Vaccari L, Schiroli D, Marraccini C, Baricchi R, Merolle L. Cryopreservation affects platelet macromolecular composition over time after thawing and differently impacts on cancer cells behavior in vitro. Platelets 2023; 34:2281943. [PMID: 38010129 DOI: 10.1080/09537104.2023.2281943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Cryopreservation affects platelets' function, questioning their use for cancer patients. We aimed to investigate the biochemical events that occur over time after thawing to optimize transfusion timing and evaluate the effect of platelet supernatants on tumor cell behavior in vitro. We compared fresh (Fresh-PLT) with Cryopreserved platelets (Cryo-PLT) at 1 h, 3 h and 6 h after thawing. MCF-7 and HL-60 cells were cultured with Fresh- or 1 h Cryo-PLT supernatants to investigate cell proliferation, migration, and PLT-cell adhesion. We noticed a significant impairment of hemostatic activity accompanied by a post-thaw decrease of CD42b+ , which identifies the CD62P--population. FTIR spectroscopy revealed a decrease in the total protein content together with changes in their conformational structure, which identified two sub-groups: 1) Fresh and 1 h Cryo-PLT; 2) 3 h and 6 h cryo-PLT. Extracellular vesicle shedding and phosphatidylserine externalization (PS) increased after thawing. Cryo-PLT supernatants inhibited cell proliferation, impaired MCF-7 cell migration, and reduced ability to adhere to tumor cells. Within the first 3 hours after thawing, irreversible alterations of biomolecular structure occur in Cryo-PLT. Nevertheless, Cryo-PLT should be considered safe for the transfusion of cancer patients because of their insufficient capability to promote cancer cell proliferation, adhesion, or migration.
Collapse
Affiliation(s)
- Gaia Gavioli
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
- Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Agnese Razzoli
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
- Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Diana E Bedolla
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza, Italy
- Molecular Pathology Lab, International Center for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
- Center for Biospectroscopy and School of Chemistry, Monash University, Clayton, VIC, Australia
| | | | - Eleonora Quartieri
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Barbara Iotti
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Pamela Berni
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | | | - Lisa Vaccari
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza, Italy
| | - Davide Schiroli
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Chiara Marraccini
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Roberto Baricchi
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Lucia Merolle
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| |
Collapse
|
9
|
Dumont LJ, Wolfe B, Leite C, Moss R, Wegener C, Thompson K, Min K. Feasibility evaluation of two novel systems for the automated preparation and extended storage of DMSO cryopreserved platelets. Transfusion 2023; 63:1554-1562. [PMID: 37358313 DOI: 10.1111/trf.17464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Manufacturing methods for dimethyl sulfoxide (DMSO)-cryopreserved platelets (CPPs) are manual and labor intensive. Thawing and prepare-for-transfusion steps are in an open system that requires transfusion within 4 h. A fill-and-finish system (CUE) can automate the manufacturing process. A newly configured bag system allows freezing, thawing, and use of resuspension solutions while maintaining the functionally closed system, and extending the post-thaw shelf life beyond 4 h. Our objective is to evaluate the feasibility of the CUE system and the functionally closed bag system. STUDY DESIGN AND METHODS DMSO was volumetrically added to double-dose apheresis platelets, concentrated, and delivered to a 50- or 500-mL ethylene-vinyl acetate (EVA) bag by the CUE (n = 12). The functionally closed bag system contained 25 mL platelet additive solution 3 (PAS-3) in a 50-mL EVA bag. Control CPP (n = 2) were manually prepared. PAS-3 and CPP were thawed together. CPP were stored up to 98 h (20-24°C) and tested using a standard assay panel. RESULTS CUE prepared CPP met the design targets: volume, platelet content, and DMSO concentration. CUE CPP P-selectin was high. CD42b, phosphatidylserine (PS) expression, and live cell percentage were favorable compared to controls and favorably maintained over storage. The thrombin generation potency was slightly reduced compared to controls. The 50 mL EVA bag maintained pH for up to 30 h, and the 500 mL EVA bag beyond 76 h. DISCUSSION The CUE system presents a technically feasible method to prepare CPP. A functionally closed bag system with resuspension solution was successful and can extend the post-thaw storage time of CPP.
Collapse
Affiliation(s)
- Larry J Dumont
- Vitalant Research Institute, Denver, Colorado, USA
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brian Wolfe
- Vitalant Research Institute, Denver, Colorado, USA
| | | | - Raymond Moss
- Vitalant Research Institute, Denver, Colorado, USA
| | | | | | | |
Collapse
|
10
|
Johnson L, Lei P, Waters L, Padula MP, Marks DC. Identification of platelet subpopulations in cryopreserved platelet components using multi-colour imaging flow cytometry. Sci Rep 2023; 13:1221. [PMID: 36681723 PMCID: PMC9867743 DOI: 10.1038/s41598-023-28352-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Cryopreservation of platelets, at - 80 °C with 5-6% DMSO, results in externalisation of phosphatidylserine and the formation of extracellular vesicles (EVs), which may mediate their procoagulant function. The phenotypic features of procoagulant platelets overlap with other platelet subpopulations. The aim of this study was to define the phenotype of in vitro generated platelet subpopulations, and subsequently identify the subpopulations present in cryopreserved components. Fresh platelet components (n = 6 in each group) were either unstimulated as a source of resting platelets; or stimulated with thrombin and collagen to generate a mixture of aggregatory and procoagulant platelets; calcium ionophore (A23187) to generate procoagulant platelets; or ABT-737 to generate apoptotic platelets. Platelet components (n = 6) were cryopreserved with DMSO, thawed and resuspended in a unit of thawed plasma. Multi-colour panels of fluorescent antibodies and dyes were used to identify the features of subpopulations by imaging flow cytometry. A combination of annexin-V (AnnV), CD42b, and either PAC1 or CD62P was able to distinguish the four subpopulations. Cryopreserved platelets contained procoagulant platelets (AnnV+/PAC1-/CD42b+/CD62P+) and a novel population (AnnV+/PAC1-/CD42b+/CD62P-) that did not align with the phenotype of aggregatory (AnnV-/PAC1+/CD42b+/CD62P+) or apoptotic (AnnV+/PAC1-/CD42b-/CD62P-) subpopulations. These data suggests that the enhanced haemostatic potential of cryopreserved platelets may be due to the cryo-induced development of procoagulant platelets, and that additional subpopulations may exist.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia.
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.
| | - Pearl Lei
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Lauren Waters
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
11
|
Noorman F, Rijnhout TWH, de Kort B, Hoencamp R. Frozen for combat: Quality of deep-frozen thrombocytes, produced and used by The Netherlands Armed Forces 2001-2021. Transfusion 2023; 63:203-216. [PMID: 36318083 PMCID: PMC10092739 DOI: 10.1111/trf.17166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND The Netherlands Armed Forces (NLAF) are using -80°C deep-frozen thrombocyte concentrate (DTC) since 2001. The aim of this study is to investigate the effect of storage duration and alterations in production/measurement techniques on DTC quality. It is expected that DTC quality is unaffected by storage duration and in compliance with the European guidelines for fresh and cryopreserved platelets. STUDY DESIGN AND METHODS Pre-freeze and post-thaw product platelet content and recovery were collected to analyze the effects of dimethyl sulfoxide (DMSO) type, duration of frozen storage (DMSO-1 max 12 years and DMSO-2 frozen DTC max 4 years at -80°C) and type of plasma used to suspend DTC. Coagulation characteristics of thawed DTC, plasma and supernatant of DTC (2× 2500 G) were measured with Kaolin thromboelastography (TEG) and phospholipid (PPL) activity assay. RESULTS Platelet content and recovery of DTC is ±10%-15% lower in short-stored products and remained stable when stored beyond 0.5 years. Thawed DTC (n = 1724) were compliant to the European guidelines (98.1% post-thaw product recovery ≥50% from original product, 98.3% ≥200 × 109 platelets/unit). Compared to DMSO-1, products frozen with DMSO-2 showed ±8% reduced thaw-freeze recovery, a higher TEG clot strength (MA 58 [6] vs. 64 [8] mm) and same ±11 s PPL clotting time. The use of cold-stored thawed plasma instead of fresh thawed plasma did not influence product recovery or TEG-MA. DISCUSSION Regardless of alterations, product quality was in compliance with European guidelines and unaffected by storage duration up to 12 years of -80°C frozen storage.
Collapse
Affiliation(s)
- Femke Noorman
- Military Blood Bank, Ministry of Defense, Utrecht, The Netherlands
| | - Tim W H Rijnhout
- Department of Surgery, Alrijne Medical Centre, Leiderdorp, The Netherlands.,Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bob de Kort
- Military Blood Bank, Ministry of Defense, Utrecht, The Netherlands
| | - Rigo Hoencamp
- Department of Surgery, Alrijne Medical Centre, Leiderdorp, The Netherlands.,Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Defense Healthcare Organization, Ministry of Defense, Utrecht, The Netherlands.,Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
12
|
Abstract
There is a crucial need for platelet transfusion during an emergency-surgery and treatment of platelet disorders. The unavailability of donors has furthermore increased the demand for platelet storage. Platelets have limited shelf life due to bacterial contamination and storage lesions. Temperature, materials, oxygen availability, media, platelet processing and manufacturing methods influence the platelet quality and viability during storage. The conception of various platelet additive solutions along with the advent of plastic storage during the 1980s led to enormous developments in platelet storage strategies. Cold storage of platelets gained attention despite its inability to contribute to platelet survival post-transfusion as it offers faster haemostasis. Several developments in platelet storage strategies over the years have improved the quality and shelf-life of stored platelets. Despite the progress, the efficacy of platelets during storage beyond a week has not been achieved. Antioxidants as additives have been explored in platelet storage and have proven to enhance the efficacy of platelets during prolonged storage. However, the molecular interactions of antioxidants in platelets can provide a better understanding of their mechanism of action. Optimization of dosage concentrations of antioxidants is also a critical parameter to be considered as they tend to exhibit toxicity at certain levels. This review provides comprehensive insights into the critical factors affecting platelet storage and the evolution of platelet storage. It also emphasizes the role of antioxidants as additives in platelet storage solutions and their future prospects towards better platelet banking.
Collapse
Affiliation(s)
- Vani Rajashekaraiah
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), #34, 1st Cross, JC Road, Bengaluru, 560027, India.
| | - Magdaline Christina Rajanand
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), #34, 1st Cross, JC Road, Bengaluru, 560027, India
| |
Collapse
|
13
|
Johnson L, Roan C, Costa M, Aung HH, Marks DC. Gamma and X-ray irradiation do not affect the in vitro quality of refrigerated apheresis platelets in platelet additive solution (PAS-E). Transfusion 2022; 62 Suppl 1:S43-S52. [PMID: 35748661 DOI: 10.1111/trf.16983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelet refrigeration (cold storage) provides the advantages of an extended shelf life and reduces the risk of bacterial growth, compared to platelets stored at room temperature (RT). However, processing modifications, such as irradiation, may further improve the safety and/or alter the quality of cold-stored platelets. Platelet components are irradiated to prevent transfusion-associated graft versus host disease (TA-GvHD) in high-risk patients; and while irradiation has little effect on the quality of RT-stored platelet components, there is no data assessing the effect irradiation has following cold storage. STUDY DESIGN AND METHODS Triple-dose apheresis platelets were collected in 40% plasma/60% PAS-E, using the TRIMA apheresis platform, and refrigerated (2-6°C) within 8 h of collection. On day 2, one of each component was gamma or X-ray irradiated or remained non-irradiated. Platelets were tested over 21 days. RESULTS The platelet concentration decreased by approximately 20% in all groups during 21 days of storage (p > .05). Irradiation (gamma or X-ray) did not affect platelet metabolism, and the pH was maintained above the minimum specification (>6.4) for 21 days. The surface phenotype and the composition of the supernatant was similar in non-irradiated and irradiated platelets, regardless of the source of radiation. Functional responses (aggregation and clot formation) were not affected by irradiation. DISCUSSION Gamma and X-ray irradiation do not affect the in vitro quality of platelet components stored in the cold for up to 21 days. This demonstrates the acceptability of irradiating cold-stored platelets, which has the potential to improve their safety for at-risk patient cohorts.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Christopher Roan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Marylia Costa
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Htet Htet Aung
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
14
|
Abstract
BACKGROUND Military involvement in Afghanistan ended in 2021 and while low intensity troop engagements continue globally, casualty numbers are dwindling. To understand the clinical and operational connections between blood utilization and clinical paradigm shifts in resuscitation strategies, a review of blood product utilization and the changes in the last decade was conducted within the US Central Command area of responsibility (AOR). The intent of this review was to assess patterns of blood use during the last decade of the US's involvement in the most recent major conflicts in order to potentially inform future blood requirements.Study DesignBlood product and types transfused between Jan 1, 2011 and Dec 31, 2020 were acquired from the Medical Situational Awareness in Theater (MSAT) blood reports. All reported blood usage data in the US Central Command area of responsibility were queried. RESULTS Packed red blood cells and fresh frozen plasma usage showed no statistically significant change over time (τb = 0.24, p = 0.3252; τb = -0.47, p = .0603). Fresh and stored whole blood use increased overtime (τb = 0.69, p = 0.0056; τb = 0.83, p = 0.0015). A strong inverse relationship was found between SWB and FFP usage (r = -0.68, p = .0309) and LP and FFP usage (r = -0.65, p = 0.0407) over time. CONCLUSION Whole blood usage increased significantly over time with a preference for stored whole blood. Component therapy is anticipated to remain a critical element of resuscitation in the event of large-scale combat operations secondary to supply chain and longer storage times. LEVEL OF EVIDENCE Level III Therapeutic/Care Management.
Collapse
|
15
|
Wood B, Padula MP, Marks DC, Johnson L. Cryopreservation alters the immune characteristics of platelets. Transfusion 2021; 61:3432-3442. [PMID: 34636427 DOI: 10.1111/trf.16697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cryopreserved platelets are under clinical evaluation as they offer improvements in shelf-life and potentially hemostatic effectiveness. However, the effect of cryopreservation on characteristics related to the immune function of platelets has not been examined. STUDY DESIGN AND METHODS Buffy coat derived platelets were cryopreserved at -80°C using 5%-6% dimethylsulfoxide (DMSO, n = 8). Paired testing was conducted pre-freeze (PF), post-thaw (PT0), and after 24 h of post-thaw storage at room temperature (PT24). The concentration of biological response modifiers (BRMs) in the supernatant was measured using commercial ELISAs and surface receptor abundance was assessed by flow cytometry. RESULTS Cryopreservation resulted in increased RANTES, PF4, and C3a but decreased IL-1β, OX40L, IL-13, IL-27, CD40L, and C5a concentrations in the supernatant, compared to PF samples. C4a, endocan, and HMGB1 concentrations were similar between the PF and PT0 groups. The abundance of surface-expressed P-selectin, siglec-7, TLR3, TLR7, and TLR9 was increased PT0; while CD40, CLEC2, ICAM-2, and MHC-I were decreased, compared to PF. The surface abundance of CD40L, B7-2, DC-SIGN, HCAM, TLR1, TLR2, TLR4, and TLR6 was unchanged by cryopreservation. Following 24 h of post-thaw storage, all immune associated receptors and TLRs increased to levels higher than observed on PF and PT0 platelets. CONCLUSION Cryopreservation alters the immune phenotype of platelets. Understanding the clinical implications of the observed changes in BRM release and receptor abundance are essential, as they may influence the likelihood of adverse events.
Collapse
Affiliation(s)
- Ben Wood
- Research & Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| |
Collapse
|
16
|
Jimenez-Marco T, Castrillo A, Hierro-Riu F, Vicente V, Rivera J. Frozen and cold-stored platelets: reconsidered platelet products. Platelets 2021; 33:27-34. [PMID: 34423718 DOI: 10.1080/09537104.2021.1967917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet transfusion, both prophylactic and therapeutic, is a key element in modern medicine. Currently, the standard platelet product for clinical use is platelet concentrates at room temperature (20-24°C) under gentle agitation. As this temperature favors bacterial growth, storage is limited to 5-7 days, which result in high wastage rate, and complicates inventory and product availability at remote areas. Frozen and/or cold storage would ameliorate those disadvantages by reducing the risk of bacterial contamination and by extending the product shelf-life to weeks or even years. Consequently, the usefulness in transfusion medicine of platelet cryopreservation and refrigeration, two old and scarcely used platelet storage approaches, is reemerging. Indeed, there have been substantial recent research efforts to characterize both cold and cryopreserved platelets. Most recent studies indicate that cryopreserved and cold platelets display a pro-coagulant profile that may produce the rapid hemostatic response which is needed in bleeding patients. Thus, it seems appropriate that blood banks and blood transfusion centers explore the possibility of split platelet inventories consisting of platelets stored at room temperature and cryopreserved and cold-stored platelets.
Collapse
Affiliation(s)
- Teresa Jimenez-Marco
- Fundació Banc De Sang I Teixits De Les Illes Balears, Majorca, Spain.,Institut d'Investigació Sanitària Illes Balears (Idisba), Majorca, Spain
| | - Azucena Castrillo
- Axencia Galega De Sangue, Órganos E Tecidos. Santiago De Compostela, A Coruña, Spain
| | | | - Vicente Vicente
- Servicio De Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional De Hemodonación, Universidad De Murcia, IMIB-Arrixaca, Murcia, Spain
| | - José Rivera
- Servicio De Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional De Hemodonación, Universidad De Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
17
|
Johnson L, Vekariya S, Wood B, Tan S, Roan C, Marks DC. Refrigeration of apheresis platelets in platelet additive solution (PAS-E) supports in vitro platelet quality to maximize the shelf-life. Transfusion 2021; 61 Suppl 1:S58-S67. [PMID: 34269458 DOI: 10.1111/trf.16489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Refrigeration, or cold-storage, of platelets may be beneficial to extend the limited shelf-life of conventionally stored platelets and support transfusion protocols in rural and military areas. The aim of this study was to compare the morphologic, metabolic, and functional aspects of apheresis platelets stored at room-temperature (RT) or cold conditions, in either plasma or supplemented with platelet additive solution (PAS). STUDY DESIGN AND METHODS Double-dose apheresis platelets were collected in either 100% plasma or 40% plasma/60% PAS-E using the Trima apheresis platform. One component from each group was either stored at RT (20-24°C) or refrigerated (2-6°C). Platelets were tested over a 21-day period. RESULTS The platelet concentration decreased by approximately 30% in all groups during 21 days of storage (p > .05). Cold-storage reduced glycolytic metabolism, and the pH was maintained above the minimum specification (>6.4) for 21 days only when platelets were stored in PAS. The surface phenotype and the composition of the supernatant were differentially affected by temperature and storage solution. Functional responses (aggregation, agonist-induced receptor activation, clotting time) were improved during cold-storage, and the influence of residual plasma was assay dependent. CONCLUSION In vitro platelet quality is differentially affected by storage time, temperature, and solution. Cold-storage, particularly in PAS, better maintains key metabolic, phenotypic, and functional parameters during prolonged storage.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Shuchna Vekariya
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Ben Wood
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Shereen Tan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Christopher Roan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|