1
|
Floch A, Lomas-Francis C, Vege S, Burgos A, Hoffman R, Cusick R, de Brevern AG, Westhoff CM. Two new Scianna variants causing loss of high prevalence antigens: ERMAP model and 3D analysis of the antigens. Transfusion 2023; 63:230-238. [PMID: 36349441 DOI: 10.1111/trf.17182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Scianna (Sc) antigens, seven high and two of low prevalence, are expressed on erythrocyte membrane-associated protein (ERMAP). We investigated SC (ERMAP) in individuals who made antibodies to high prevalence Scianna antigens, and propose a 3D model for ERMAP to precisely localize the residues associated with the known antigens. METHODS Serological testing and DNA sequencing was performed by standard methods. A 3D structural model was built using a multi-template homology approach. Protein structures representing missense variants associated with the loss or gain of an antigen were generated. Residue accessibility and intraprotein interactions were compared with the wild-type protein. RESULTS Two new SC alleles, one with c.349C > T (p.Arg117Cys) in a woman from South India with anti-Sc3 in her plasma, and a c.217_219delinsTGT (p.Arg73Cys) in an African-American woman with an antibody to a new high prevalence antigen, termed SCAC, were identified. Six structural templates were used to model ERMAP. 3D analysis showed that residues key for Scianna antigen expression were all exposed at the surface of the extracellular domain. The p.Arg117Cys change was predicted to abolish interactions between residues 93 and 117, with no compensating interactions. CONCLUSION We confirm the extracellular location of Scianna residues responsible for antigen expression which predicts direct accessibility to antibodies. Loss of intraprotein interactions appear to be responsible for a Sc null and production of anti-Sc3 with p.117Cys, SC*01 N.03, and for loss of a high prevalence antigen with p.73Cys, termed SCAC for Sc Arg to Cys. Comparative modeling aids our understanding of new alleles and Scianna antigen expression.
Collapse
Affiliation(s)
- Aline Floch
- Immunohematology and Genomics Laboratory, New York Blood Center, New York City, New York, USA.,Laboratoire de Biologie Medicale de Reference en Immunohematologie Moleculaire, Etablissement francais du sang Ile-de-France, Creteil, France.,Univ Paris Est Creteil, INSERM U955 Equipe « Transfusion et maladies du globule rouge », IMRB, Creteil, France
| | - Christine Lomas-Francis
- Immunohematology and Genomics Laboratory, New York Blood Center, New York City, New York, USA
| | - Sunitha Vege
- Immunohematology and Genomics Laboratory, New York Blood Center, New York City, New York, USA
| | - Anna Burgos
- Immunohematology and Genomics Laboratory, New York Blood Center, New York City, New York, USA
| | - Roser Hoffman
- Vitalant Reference and Transfusion Services, Tempe, Arizona, USA
| | | | - Alexandre G de Brevern
- Université Paris Cité, Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université de la Réunion, Université des Antilles, Paris, France
| | - Connie M Westhoff
- Immunohematology and Genomics Laboratory, New York Blood Center, New York City, New York, USA
| |
Collapse
|
2
|
Gassner C, Castilho L, Chen Q, Clausen FB, Denomme GA, Flegel WA, Gleadall N, Hellberg Å, Ji Y, Keller MA, Lane WJ, Ligthart P, Lomas-Francis C, Nogues N, Olsson ML, Peyrard T, Storry JR, Tani Y, Thornton N, van der Schoot E, Veldhuisen B, Wagner F, Weinstock C, Wendel S, Westhoff C, Yahalom V, Hyland CA. International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology Report of Basel and three virtual business meetings: Update on blood group systems. Vox Sang 2022; 117:1332-1344. [PMID: 36121188 PMCID: PMC10680040 DOI: 10.1111/vox.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).
Collapse
Affiliation(s)
- Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | | | - Qing Chen
- Jiangsu Province Blood Center, Nanjing, Jiangsu, China
| | - Frederik Banch Clausen
- Department of Clinical Immunology, Laboratory of Blood Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Willy A. Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Nick Gleadall
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Åsa Hellberg
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
| | - Yanli Ji
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, People’s Republic of China
| | | | - William J. Lane
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Ligthart
- Department of Diagnostic Immunohematology, Sanquin, Amsterdam, The Netherlands
| | - Christine Lomas-Francis
- Laboratory of Immunohematology and Genomics, New York Blood Center Enterprise, New York, New York, USA
| | | | - Martin L. Olsson
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Thierry Peyrard
- Etablissement Français du Sang Ile-de-France, Centre National de Référence pour les Groupes sanguins, Ivry-sur-Seine, France
- UMR_S1134 Inserm Université Paris Cité, Paris, France
| | - Jill R. Storry
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | | | - Nicole Thornton
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK
| | - Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin, Amsterdam, The Netherlands
| | - Barbera Veldhuisen
- Department of Diagnostic Immunohematology, Sanquin, Amsterdam, The Netherlands
- Department of Experimental Immunohematology, Sanquin, Amsterdam, The Netherlands
| | - Franz Wagner
- German Red Cross Blood Service NSTOB, Springe, Germany
- MVZ Clementinenkrankenhaus, Springe, Germany
| | - Christof Weinstock
- Department of Transfusion Medicine, Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service, Ulm, Germany
| | | | - Connie Westhoff
- Laboratory of Immunohematology and Genomics, New York Blood Center Enterprise, New York, New York, USA
| | - Vered Yahalom
- Rabin Medical Center, Petach Tiqva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
3
|
Núñez Ahumada MA, Arancibia Aros CE, Villalobos Pavez CE, Pontigo Gonzalez FM, Abarca Arce V, Sandoval Medrano M, Reyes Jorquera S. A mild case of hemolytic disease of the fetus and newborn due to anti-Sc2. Immunohematology 2021; 37:122-125. [PMID: 34591375 DOI: 10.21307/immunohematology-2021-018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the case of a newborn girl with jaundice due to increased indirect bilirubin with a positive direct antiglobulin test (DAT) and compensated hemolysis. The result of the newborn's DAT was discrepant with the negative result of the mother's indirect antiglobulin test. The multiparous mother had a previous history of fetal hydrops miscarriage, with no known cause, and no record of the cause was found at the hospital where she was treated. After referring samples from the mother and newborn to a reference laboratory, the rare alloanti-Sc2 was identified in the mother's plasma and in the newborn's eluate. HEA BeadChip genotyping of the newborn's DNA sample predicted the SC:1,2 phenotype. We report the case of a newborn girl with jaundice due to increased indirect bilirubin with a positive direct antiglobulin test (DAT) and compensated hemolysis. The result of the newborn’s DAT was discrepant with the negative result of the mother’s indirect antiglobulin test. The multiparous mother had a previous history of fetal hydrops miscarriage, with no known cause, and no record of the cause was found at the hospital where she was treated. After referring samples from the mother and newborn to a reference laboratory, the rare alloanti-Sc2 was identified in the mother’s plasma and in the newborn’s eluate. HEA BeadChip genotyping of the newborn’s DNA sample predicted the SC:1,2 phenotype.
Collapse
Affiliation(s)
- M A Núñez Ahumada
- Clínica Santa María , 0500 Santa María Avenue, Providencia, Santiago , Chile 7520378
| | | | - C E Villalobos Pavez
- Transfusion Medicine Service, Blood Bank, Clínica Santa María , Santiago , Chile
| | - F M Pontigo Gonzalez
- Clínica Santa María, Molecular Biology Laboratory of Blood Groups, Blood Bank, Clínica Santa María , Santiago , Chile
| | - V Abarca Arce
- Blood Bank, Clínica Alemana de Temuco , Temuco , Chile
| | | | - S Reyes Jorquera
- Blood Bank Medical Chief, Clínica Alemana de Temuco , Temuco , Chile
| |
Collapse
|