1
|
Kobayashi K, Murakami K, Baba K. Effects of Lipophilic Statins on Cell Viability and Tissue Factor Expression in Canine Haemangiosarcoma Cells. Vet Comp Oncol 2024; 22:581-591. [PMID: 39319370 DOI: 10.1111/vco.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/18/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Canine haemangiosarcoma (HSA) is a highly aggressive cancer often associated with coagulation abnormalities. Statins, inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) clinically prescribed for hypercholesterolemia, are also believed to possess antitumour and anticoagulant properties by inhibiting downstream Akt activation. Akt phosphorylation is involved in the mechanism of the antitumour and tissue factor (TF)-lowering effects of statins. In the present study, we aimed to investigate whether statins could inhibit cell viability while concurrently inducing anticoagulant properties by regulating the expression of TFs in canine HSA cells. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), we initially exclusively detected HMGCR mRNA expression in canine HSA tissues and cell lines but not in normal cephalic vein and spleen tissues. Moreover, treatment with lipophilic statins, including atorvastatin, fluvastatin, and simvastatin, inhibited cell viability in a concentration-dependent manner and decreased TF expression both at the mRNA and protein levels, as evidenced by cell viability assays, RT-qPCR, and immunoblotting, respectively. Further investigation using cell viability assays and flow cytometry revealed that simvastatin decreased Akt phosphorylation, and MK-2206, a specific Akt inhibitor, mirrored the effect of simvastatin on cell viability and cell cycle arrest. However, MK-2206 exhibited different effects on TF expression depending on the cell type, indicating that Akt phosphorylation may not consistently regulate TF expression. Overall, this study provides insights into the potential therapeutic use of statins in targeting tumour growth and coagulation abnormalities in canine HSA. Further research is warranted to fully elucidate the underlying mechanisms and clinical applications of statins in canine HSA treatment.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Kohei Murakami
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Kenji Baba
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Dhakal S, Macreadie IG. Simvastatin, Its Antimicrobial Activity and Its Prevention of Alzheimer's Disease. Microorganisms 2024; 12:1133. [PMID: 38930515 PMCID: PMC11205914 DOI: 10.3390/microorganisms12061133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Simvastatin, a blockbuster drug for treating hypercholesterolemia, has multifactorial benefits as an antimicrobial agent and plays a preventative role in reducing the incidence of Alzheimer's Disease (AD). Although most of the beneficial effects of simvastatin have been attributed to its ability to reduce cholesterol levels, recent scientific studies have suggested that its benefits are largely due to its pleiotropic effects in targeting other pathways, e.g., by inhibiting protein lipidation. There are certain pleiotropic effects that can be predicted from the inhibition of the mevalonate pathway; however, some of the effects of simvastatin in proteostasis lead to reduced levels of amyloid beta, the key contributor to AD. This review discusses the use of simvastatin as an antimicrobial agent and anti-AD drug.
Collapse
Affiliation(s)
- Sudip Dhakal
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization (CSIRO), Geelong, VIC 3220, Australia;
| | - Ian G. Macreadie
- School of Science, RMIT University, Bundoora, VIC 3063, Australia
| |
Collapse
|
3
|
Kobayashi K, Baba K, Kambayashi S, Okuda M. Blockade of isoprenoids biosynthesis by simvastatin induces autophagy-mediated cell death via downstream c-Jun N-terminal kinase activation and cell cycle dysregulation in canine T-cell lymphoma cells. Res Vet Sci 2024; 169:105174. [PMID: 38340381 DOI: 10.1016/j.rvsc.2024.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Statins are inhibitors of the mevalonic acid pathway that mediates cellular metabolism by producing cholesterol and isoprenoids and are widely used in treating hypercholesterolaemia in humans. Lipophilic statins, including simvastatin, induce death in various tumour cells. However, the cytotoxic mechanisms of statins in tumour cells remain largely unexplored. This study aimed to elucidate the cytotoxic mechanisms of simvastatin in canine lymphoma cells. Simvastatin induced cell death via c-Jun N-terminal kinase (JNK) activation and autophagy in canine T-cell lymphoma cell lines Ema and UL-1, but not in B-cell lines. Cell death was mediated by induction of caspase-dependent apoptosis in UL-1 cells, but not in Ema cells. Blockade of autophagy by lysosomal inhibitors attenuated simvastatin-induced JNK activation and cell death. Isoprenoids, including farnesyl pyrophosphate and geranylgeranyl pyrophosphate, attenuated simvastatin-induced autophagy, JNK activation, and cell death. In UL-1 cells, simvastatin treatment resulted in the cell cycle arrest at the G2/M phase, which was altered to G0/1 phase cell cycle arrest by treatment with lysosomal inhibitors. These findings demonstrate that depletion of isoprenoids by simvastatin induces autophagy-mediated cell death via downstream JNK activation and cell cycle dysregulation in canine T-cell lymphoma cells.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Kenji Baba
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8511, Japan.
| | - Satoshi Kambayashi
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8511, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8511, Japan
| |
Collapse
|
4
|
Kapturska KM, Pawlak A. New molecular targets in canine hemangiosarcoma-Comparative review and future of the precision medicine. Vet Comp Oncol 2023; 21:357-377. [PMID: 37308243 DOI: 10.1111/vco.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Human angiosarcoma and canine hemangiosarcoma reveal similarities not only in their aggressive clinical behaviour, but especially in molecular landscape and genetic alterations involved in tumorigenesis and metastasis formation. Currently, no satisfying treatment that allows for achieving long overall survival or even prolonged time to progression does not exist. Due to the progress that has been made in targeted therapies and precision medicine the basis for a new treatment design is to uncover mutations and their functions as possible targets to provide tailored drugs for individual cases. Whole exome or genome sequencing studies and immunohistochemistry brought in the last few years important discoveries and identified the most common mutations with probably crucial role in this tumour development. Also, despite a lack of mutation in some of the culprit genes, the cancerogenesis cause may be buried in main cellular pathways connected with proteins encoded by those genes and involving, for example, pathological angiogenesis. The aim of this review is to highlight the most promising molecular targets for precision oncology treatment from the veterinary perspective aided by the principles of comparative science. Some of the drugs are only undergoing laboratory in vitro studies and others entered the clinic in the management of other cancer types in humans, but those used in dogs with promising responses have been mentioned as priorities.
Collapse
Affiliation(s)
- Karolina Małgorzata Kapturska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- Veterinary Clinic NEOVET s.c. Hildebrand, Jelonek, Michalek-Salt, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
5
|
Ishikawa T, Osaki T, Sugiura A, Tashiro J, Warita T, Hosaka YZ, Warita K. Atorvastatin preferentially inhibits the growth of high ZEB-expressing canine cancer cells. Vet Comp Oncol 2021; 20:313-323. [PMID: 34657361 DOI: 10.1111/vco.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is fundamental in cancer progression and contributes to the acquisition of malignant properties. The statin class of cholesterol-lowering drugs exhibits pleiotropic anticancer effects in vitro and in vivo, and many epidemiologic studies have reported a correlation between statin use and reduced cancer mortality. We have shown previously that sensitivity to the anti-proliferative effect of statins varies among human cancer cells and statins are more effective against mesenchymal-like cells than epithelial-like ones in human cancers. There have only been few reports on the application of statins to cancer therapy in veterinary medicine, and differences in statin sensitivity among canine cancer cells have not been examined. In this study, we aimed to clarify the correlation between sensitivity to atorvastatin and epithelial/mesenchymal states in 11 canine cancer cell lines derived from mammary gland, squamous cell carcinoma, lung, and melanoma. Sensitivity to atorvastatin varied among canine cancer cells, with IC50 values ranging from 5.92 to 71.5 μM at 48 h, which were higher than the plasma concentrations clinically achieved with statin therapy. Atorvastatin preferentially attenuated the proliferation of mesenchymal-like cells. In particular, highly statin-sensitive cells were characterized by aberrant expression of the ZEB family of EMT-inducing transcription factors. However, ZEB2 silencing in highly sensitive cells did not induce resistance to atorvastatin. Taken together, these results suggest that high expression of ZEB is a characteristic of highly statin-sensitive cells and could be a molecular marker for predicting whether cancers are sensitive to statins, though ZEB itself does not confer statin sensitivity.
Collapse
Affiliation(s)
- Takuro Ishikawa
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Osaki
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Jiro Tashiro
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomoko Warita
- Department of Biomedical Sciences, School of Biological and Environmental Science, Kwansei Gakuin University, Hyogo, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
6
|
Manda K, Juerß D, Fischer P, Schröder A, Koenen A, Hildebrandt G. Simvastatin treatment varies the radiation response of human breast cells in 2D or 3D culture. Invest New Drugs 2021; 39:658-669. [PMID: 33313978 PMCID: PMC8068713 DOI: 10.1007/s10637-020-01046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/06/2020] [Indexed: 11/15/2022]
Abstract
Background Statins inhibit the cholesterol biosynthesis and are used as cholesterol-lowering agents in fat-metabolism disorders. Furthermore, several studies state that statins have supportive functions in breast cancer treatment. Therefore, simvastatin (SVA) as a potential radiosensitizer should be investigated on the basis of human breast cells. Methods First, an optimal concentration of SVA for normal (MCF10A) and cancer (MCF-7) cells was identified via growth and cytotoxicity assays that, according to the definition of a radiosensitizer in the narrower sense, enhances the effect of radiation therapy but has no cytotoxic effect. Next, in combination with radiation SVA's influence on DNA repair capacity and clonogenic survival in 2D and 3D was determined. Furthermore cell cycle distribution, expression of survivin and connective tissue growth factor (CTGF) as well as ERK1 map kinase were analysed. Results 1 μM SVA was identified as highest concentration without an influence on cell growth and cytotoxicity and was used for further analyses. In terms of early and residual γH2AX-foci, SVA affected the number of foci in both cell lines with or without irradiation. Different radiation responses were detected in 2D and 3D culture conditions. During the 2D cultivation, a radiosensitizing effect within the clonogenic survival was observable, but not in 3D. Conclusion The present study suggests that SVA may have potential for radiosensitization. Therefore, it is important to further investigate the role of SVA in relation to the extent of radiosensitization and how it could be used to positively influence the therapy of breast cancer or other entities.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Dajana Juerß
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Paul Fischer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Annemarie Schröder
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Annelie Koenen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| |
Collapse
|