1
|
Pardo M, Spencer E, Odunayo A, Ramirez ML, Rudloff E, Shafford H, Weil A, Wolff E. 2024 AAHA Fluid Therapy Guidelines for Dogs and Cats. J Am Anim Hosp Assoc 2024; 60:131-163. [PMID: 38885492 DOI: 10.5326/jaaha-ms-7444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Fluids are drugs used in veterinary patients capable of producing beneficial therapeutic or inadvertent harmful effects within the body's intravascular, interstitial, and intracellular fluid spaces. The individualized design of a fluid therapy plan requires careful patient assessment and targeted selection of proper fluid types, administration routes, and rates, along with adjustments during therapy tailored specifically as per the individual patient's fluid requirement and therapeutic response. Personalized fluid prescriptions and vigilant patient monitoring help avoid patient morbidity from body fluid deficiencies, fluid excess, and electrolyte derangements and support better patient outcomes. These guidelines provide an overview of fluid dynamics within the fluid spaces of the body, describe various types of fluids and their uses, and outline recommendations for fluid administration for resuscitation, rehydration, and maintenance purposes. The guidelines also outline approaches to fluid therapy for anesthetized patients and reiterate the recommendations of reduced fluid rates in this population of patients. Additionally, the guidelines include practical fluid therapy strategies for patients with various common disorders. The goal of these guidelines is to help veterinary professionals safely and effectively prescribe and administer fluid therapy for canine and feline patients.
Collapse
Affiliation(s)
- Mariana Pardo
- Critical Care Veterinarian Consulting, Pleasantville, New York (M.P.)
| | - Erin Spencer
- Veterinary Emergency Group, Derry, New Hampshire (E.S.)
| | | | - Mary L Ramirez
- North Dallas Veterinary Emergency and Specialty Hospital, Frisco, Texas (M.L.R.)
| | - Elke Rudloff
- Blue Pearl Pet Hospice, Milwaukee, Wisconsin (E.R.)
| | - Heidi Shafford
- Veterinary Anesthesia Specialists, Gladstone, Oregon (H.S.)
| | - Ann Weil
- Purdue University, West Lafayette, Indiana (A.W.)
| | - Ewan Wolff
- Blue Pearl NE Portland, Portland, Oregon (E.W.)
| |
Collapse
|
2
|
Segev G, Cortellini S, Foster JD, Francey T, Langston C, Londoño L, Schweighauser A, Jepson RE. International Renal Interest Society best practice consensus guidelines for the diagnosis and management of acute kidney injury in cats and dogs. Vet J 2024; 305:106068. [PMID: 38325516 DOI: 10.1016/j.tvjl.2024.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/10/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Acute kidney injury (AKI) is defined as an injury to the renal parenchyma, with or without a decrease in kidney function, as reflected by accumulation of uremic toxins or altered urine production (i.e., increased or decreased). AKI might result from any of several factors, including ischemia, inflammation, nephrotoxins, and infectious diseases. AKI can be community- or hospital-acquired. The latter was not previously considered a common cause for AKI in animals; however, recent evidence suggests that the prevalence of hospital-acquired AKI is increasing in veterinary medicine. This is likely due to a combination of increased recognition and awareness of AKI, as well as increased treatment intensity (e.g., ventilation and prolonged hospitalization) in some veterinary patients and increased management of geriatric veterinary patients with multiple comorbidities. Advancements in the management of AKI, including the increased availability of renal replacement therapies, have been made; however, the overall mortality of animals with AKI remains high. Despite the high prevalence of AKI and the high mortality rate, the body of evidence regarding the diagnosis and the management of AKI in veterinary medicine is very limited. Consequently, the International Renal Interest Society (IRIS) constructed a working group to provide guidelines for animals with AKI. Recommendations are based on the available literature and the clinical experience of the members of the working group and reflect consensus of opinion. Fifty statements were generated and were voted on in all aspects of AKI and explanatory text can be found either before or after each statement.
Collapse
Affiliation(s)
- Gilad Segev
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Israel.
| | - Stefano Cortellini
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Jonathan D Foster
- Department of Nephrology and Urology, Friendship Hospital for Animals, Washington DC, USA
| | - Thierry Francey
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Catherine Langston
- Veterinary Clinical Science, The Ohio State University, Columbus, OH, USA
| | - Leonel Londoño
- Department of Critical Care, Capital Veterinary Specialists, Jacksonville, FL, USA
| | - Ariane Schweighauser
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Rosanne E Jepson
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| |
Collapse
|
3
|
Fluid Therapy for Pediatric Patients. Vet Clin North Am Small Anim Pract 2022; 52:707-718. [DOI: 10.1016/j.cvsm.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Mazzaferro E, Powell LL. Fluid Therapy for the Emergent Small Animal Patient: Crystalloids, Colloids, and Albumin Products. Vet Clin North Am Small Anim Pract 2022; 52:781-796. [DOI: 10.1016/j.cvsm.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Adamik KN, Stoffel MH, Tangermann S, de Breuyn Dietler B, Stokar-Regenscheit N. Assessment of Hydroxyethyl Starch (6% HES 130/0.4) Kidney Storage in Critically Ill Dogs: A Post-mortem Prospective Study. Front Vet Sci 2022; 8:802507. [PMID: 35071392 PMCID: PMC8770911 DOI: 10.3389/fvets.2021.802507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: Intravenous hydroxyethyl starch (HES) solutions are potentially nephrotoxic due to rapid renal tissue uptake, subsequent osmotic nephrosis, and long-lasting intracellular storage. This study aimed to investigate the severity of intracellular storage of HES in renal tissue samples from critically ill dogs receiving 6% HES 130/0.4. Materials and Methods: Fresh, post-mortem (<2 h after death) renal tissue samples were analyzed through histology, immunohistochemistry (HES 130/0.4-specific antibodies), and electron microscopy for the severity of renal tubular vacuolization (VAC), intravacuolar HES accumulation (ACC), and ultra-structure impairment. Moreover, we investigated the relationship between VAC or ACC grade and HES dose (mL/kg), duration of HES administration (h), and pre-HES plasma creatinine concentrations. Results: Histology revealed that 2/20 dogs (10%) had no, 11/20 dogs (55%) had mild, 5/20 dogs (25%) had moderate, and 2/20 dogs (10%) had severe VAC. Immunohistochemistry revealed that 5/20 dogs (25%) had no, 6/20 dogs (30%) had mild, 7/20 dogs (35%) had moderate, and 2/20 dogs (10%) had severe ACC. Both changes were predominantly found in the distal tubular epithelium of mild and moderate cases, and all tubular segments were affected in severe cases. Seven of 20 dogs (35%) had osmotic nephrosis (ON). On electron microscopy, large granules with an electron-dense content were repeatedly detected in individual cells, mainly in the distal tubules. No correlation was found between cumulative HES dose or duration of HES administration and VAC grade, ACC grade, or presence/absence of ON. Conclusion: A high percentage of dogs had renal tubular HES storage and one-third of dogs showed HES-induced ON. Short-term HES administration caused VAC and ACC, regardless of the dose or duration of administration. In contrast to previous studies, HES 130/0.4 deposits were mainly located in the renal distal tubule.
Collapse
Affiliation(s)
- Katja-Nicole Adamik
- Division of Small Animal Emergency and Critical Care, Department of Veterinary Clinical Medicine, University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Simone Tangermann
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology of the Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bettina de Breuyn Dietler
- Division of Topographic and Clinical Anatomy, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Nadine Stokar-Regenscheit
- Division of Veterinary Anatomy, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Muir WW, Hughes D, Silverstein DC. Editorial: Fluid Therapy in Animals: Physiologic Principles and Contemporary Fluid Resuscitation Considerations. Front Vet Sci 2021; 8:744080. [PMID: 34746284 PMCID: PMC8563835 DOI: 10.3389/fvets.2021.744080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- William W. Muir
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Dez Hughes
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Deborah C. Silverstein
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Adamik KN, Yozova ID. Colloids Yes or No? - a "Gretchen Question" Answered. Front Vet Sci 2021; 8:624049. [PMID: 34277747 PMCID: PMC8282815 DOI: 10.3389/fvets.2021.624049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Colloid solutions, both natural and synthetic, had been widely accepted as having superior volume expanding effects than crystalloids. Synthetic colloid solutions were previously considered at least as effective as natural colloids, as well as being cheaper and easily available. As a result, synthetic colloids (and HES in particular) were the preferred resuscitation fluid in many countries. In the past decade, several cascading events have called into question their efficacy and revealed their harmful effects. In 2013, the medicines authorities placed substantial restrictions on HES administration in people which has resulted in an overall decrease in their use. Whether natural colloids (such as albumin-containing solutions) should replace synthetic colloids remains inconclusive based on the current evidence. Albumin seems to be safer than synthetic colloids in people, but clear evidence of a positive effect on survival is still lacking. Furthermore, species-specific albumin is not widely available, while xenotransfusions with human serum albumin have known side effects. Veterinary data on the safety and efficacy of synthetic and natural colloids is limited to mostly retrospective evaluations or experimental studies with small numbers of patients (mainly dogs). Large, prospective, randomized, long-term outcome-oriented studies are lacking. This review focuses on advantages and disadvantages of synthetic and natural colloids in veterinary medicine. Adopting human guidelines is weighed against the particularities of our specific patient populations, including the risk-benefit ratio and lack of alternatives available in human medicine.
Collapse
Affiliation(s)
- Katja-Nicole Adamik
- Division of Small Animal Emergency and Critical Care, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ivayla D. Yozova
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Mullen KM, Regier PJ, Ellison GW, Londoño L. A Review of Normal Intestinal Healing, Intestinal Anastomosis, and the Pathophysiology and Treatment of Intestinal Dehiscence in Foreign Body Obstructions in Dogs. Top Companion Anim Med 2020; 41:100457. [PMID: 32823156 DOI: 10.1016/j.tcam.2020.100457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Small intestinal anastomoses are commonly performed in veterinary medicine following resection of diseased or devitalized intestinal tissue. Traditionally, suture has been employed to anastomose intestinal ends. However, use of intestinal staplers has become increasingly popular due to the ability to produce a rapid anastomosis with purported superior healing properties. Under normal conditions, intestinal healing occurs in three phases: inflammatory, proliferative, and maturation. Dehiscence, a devastating consequence of intestinal anastomosis surgery, most often occurs during the inflammatory phase of healing where the biomechanical strength of the anastomosis is almost entirely dependent on the anastomotic technique (suture or staple line). The resulting septic peritonitis is associated with a staggering morbidity rate upwards of 85% secondary to the severe systemic aberrations and financial burden induced by septic peritonitis and requirement of a second surgery, respectively. Intraoperative and postoperative consideration of the multifactorial nature of dehiscence is required for successful patient management to mitigate recurrence. Moreover, intensive postoperative critical care management is necessitated and includes antibiotic and fluid therapy, vasopressor or colloidal support, and monitoring of the patient's fluid balance and cardiovascular status. An understanding of anastomotic techniques and their relation to intestinal healing will facilitate intraoperative decision-making and may minimize the occurrence of postoperative dehiscence.
Collapse
Affiliation(s)
- Kaitlyn M Mullen
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - Penny J Regier
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA.
| | - Gary W Ellison
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - Leonel Londoño
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|