1
|
Doctor MB, Basu S. Lacrimal Gland Insufficiency in Aqueous Deficiency Dry Eye Disease: Recent Advances in Pathogenesis, Diagnosis, and Treatment. Semin Ophthalmol 2022; 37:801-812. [PMID: 35587465 DOI: 10.1080/08820538.2022.2075706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aqueous deficiency dry eye disease is a chronic and potentially sight-threatening condition, that occurs due to the dysfunction of the lacrimal glands. The aim of this review was to describe the various recent developments in the understanding, diagnosis and treatment of lacrimal gland insufficiency in aqueous deficiency dry eye disease. METHODS A MEDLINE database search using PubMed was performed using the keywords: "dry eye disease/syndrome", "aqueous deficient/deficiency dry eye disease", "lacrimal gland" and "Sjogren's syndrome". After scanning through 750 relevant abstracts, 73 eligible articles published in the English language from 2016 to 2021 were included in the review. RESULTS Histopathological and ultrastructural studies have revealed new insights into the pathogenesis of cicatrising conjunctivitis-induced aqueous deficiency, where the lacrimal gland acini remain uninvolved and retain their secretory property, while significant ultrastructural changes in the gland have been observed. Recent advances in diagnosis include the techniques of direct clinical assessment of the lacrimal gland morphology and secretion, tear film osmolarity, tear film lysozyme and lactoferrin levels, tear film interferometry and lacrimal gland confocal microscopy. Developments in the treatment of aqueous deficiency dry eye disease, apart from the nanoparticle-based tear substitutes, include secretagogues like diquafosol tetrasodium and rebamipide, anti-inflammatory topical agents like nanomicellar form of cyclosporine and lifitegrast, scleral contact lenses, neurostimulation, and acupuncture for increasing the amount of tear production, minor salivary gland transplantation, faecal microbial transplantation, lacrimal gland regeneration and mesenchymal stem cell therapy. CONCLUSIONS Significant advances in the understanding, diagnosis and management of lacrimal gland insufficiency and its role in aqueous deficiency dry eye disease have taken place within the second half of the last decade. Of which, translational breakthroughs in terms of newer drug formulations and regenerative medicine are most promising.
Collapse
Affiliation(s)
- Mariya B Doctor
- Academy of Eye Care Education, L V Prasad Eye Institute, Hyderabad, India.,The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Sayan Basu
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
2
|
Chen B, Sun D, Qin X, Gao XH. Screening and identification of potential biomarkers and therapeutic drugs in melanoma via integrated bioinformatics analysis. Invest New Drugs 2021; 39:928-948. [PMID: 33501609 DOI: 10.1007/s10637-021-01072-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Melanoma is a highly aggressive malignant skin tumor with a high rate of metastasis and mortality. In this study, a comprehensive bioinformatics analysis was used to clarify the hub genes and potential drugs. Download the GSE3189, GSE22301, and GSE35388 microarray datasets from the Gene Expression Omnibus (GEO), which contains a total of 33 normal samples and 67 melanoma samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) approach analyze DEGs based on the DAVID. Use STRING to construct protein-protein interaction network, and use MCODE and cytoHubba plug-ins in Cytoscape to perform module analysis and identified hub genes. Use Gene Expression Profile Interactive Analysis (GEPIA) to assess the prognosis of genes in tumors. Finally, use the Drug-Gene Interaction Database (DGIdb) to screen targeted drugs related to hub genes. A total of 140 overlapping DEGs were identified from the three microarray datasets, including 59 up-regulated DEGs and 81 down-regulated DEGs. GO enrichment analysis showed that these DEGs are mainly involved in the biological process such as positive regulation of gene expression, positive regulation of cell proliferation, positive regulation of MAP kinase activity, cell migration, and negative regulation of the apoptotic process. The cellular components are concentrated in the membrane, dendritic spine, the perinuclear region of cytoplasm, extracellular exosome, and membrane raft. Molecular functions include protein homodimerization activity, calmodulin-binding, transcription factor binding, protein binding, and cytoskeletal protein binding. KEGG pathway analysis shows that these DEGs are mainly related to protein digestion and absorption, PPAR signaling pathway, signaling pathways regulating stem cells' pluripotency, and Retinol metabolism. The 23 most closely related DEGs were identified from the PPI network and combined with the GEPIA prognostic analysis, CDH3, ESRP1, FGF2, GBP2, KCNN4, KIT, SEMA4D, and ZEB1 were selected as hub genes, which are considered to be associated with poor prognosis of melanoma closely related. Besides, ten related drugs that may have therapeutic effects on melanoma were also screened. These newly discovered genes and drugs provide new ideas for further research on melanoma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Donghong Sun
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Xiuni Qin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Abdel-Wahab BA, Ali FEM, Alkahtani SA, Alshabi AM, Mahnashi MH, Hassanein EHM. Hepatoprotective effect of rebamipide against methotrexate-induced hepatic intoxication: role of Nrf2/GSK-3β, NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2 signaling pathways. Immunopharmacol Immunotoxicol 2020; 42:493-503. [PMID: 32865051 DOI: 10.1080/08923973.2020.1811307] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The fact that methotrexate (MTX) is hepatotoxic is an important reason to limit its clinical use. Rebamipide (REB) has antioxidant and anti-inflammatory properties and is useful for the treatment of gastro-duodenal ulcers. This study investigated the impact and protective mechanisms of REB against MTX-induced hepatotoxicity in rats. MATERIALS AND METHODS Animals were divided into four groups of six rats each: a control group, REB group (REB 100 mg/kg/day, orally), MTX control group (20 mg/kg, single i.p.), and MTX + REB group. RESULTS The administration of MTX induced marked hepatic injury in the form of hepatocyte inflammatory swelling, degeneration, apoptosis, and focal necrosis. In parallel, our biochemical investigations revealed a marked hepatic dysfunction associated with the disturbance of the oxidant/antioxidant balance in the group treated with only MTX. Moreover, MTX led to the down-regulation of the hepatic Nrf2 and Bcl-2 expressions along with a marked elevation in the hepatic NF-κβ-p65, GSK-3β, JAK1, STAT3, PUMA, and Bax expressions. On the other hand, co-treatment with REB significantly ameliorated the aforementioned histopathological, biochemical, and molecular defects caused by MTX treatment. CONCLUSION the outcomes of the present study showed REB's ability to protect from hepatic injury induced by MTX, possibly through its antioxidant, anti-inflammatory, and anti-apoptotic properties. These effects could be attributed to REB's ability to modulate, at least in part, the Nrf2/GSK-3β,NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2signaling pathways.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali M Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
4
|
Tkacheva ON, Kotovskaya YV, Aleksanyan LA, Milto AS, Naumov AV, Strazhesko ID, Vorobyeva NM, Dudinskaya EN, Malaya IP, Krylov KY, Tyukhmenev EA, Rozanov AV, Ostapenko VS, Manevich TM, Shchedrina AY, Semenov FA, Mkhitaryan EA, Khovasova NO, Yeruslanova KA, Kotovskaya NV, Sharashkina NV. Novel coronavirus infection SARS-CoV-2 in elderly and senile patients: prevention, diagnosis and treatment. Expert Position Paper of the Russian Association of Gerontology and Geriatrics. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A novel coronavirus infection SARS-CoV-2 (COVID19) is especially dangerous for elderly and senile patients. Preventive measures for elderly people should cover three areas: 1) direct prevention of the viral infection, 2) preservation of the functional status and prevention of geriatric syndromes, including the use of social support measures, 3) control of comorbidities. The clinical pattern of COVID-19 in older patients may be atypical, while the mildness of symptoms (no fever, cough, shortness of breath) may not correspond to the severity of the prognosis. Delirium may be the first manifestation of COVID-19, which requires special care in its screening. Management of elderly and senile patients with COVID19 should include measures for delirium prevention, the detection and improvement of nutrition. The risk of malnutrition with sarcopenia increases with hospitalization of a patient, especially when using artificial ventilation, is associated with an unfavorable prognosis during hospitalization, accelerates the progression of senile asthenia and reduces the quality of life. Geriatric assessment is the cornerstone of determining the management of an elderly patient.
Collapse
|
5
|
Kojima T, Dogru M, Kawashima M, Nakamura S, Tsubota K. Advances in the diagnosis and treatment of dry eye. Prog Retin Eye Res 2020; 78:100842. [PMID: 32004729 DOI: 10.1016/j.preteyeres.2020.100842] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
The core mechanism of dry eye is the tear film instability. Tear film-oriented diagnosis (TFOD) is a concept to clarify the cause of tear film instability by tear film, and tear film-oriented treatment (TFOT) is a concept to treat dry eye disease by replacing the lacking components of the tear film layer based on the TFOD. In TFOD, the fluorescein breakup pattern of the tear film is important, and the subtype of dry eye can be judged to some extent from the breakup patterns. Current noninvasive devices related to the dynamic analysis of the tear film and visual acuity enabled the diagnosis of dry eye, subtype analysis, and the extent of severity. In Asian countries, secretagogues represent the main treatment in TFOT. Since meibomian gland dysfunction is a factor that greatly affects the tear breakup time, its treatment is also essential in the dry eye treatment strategy. A newly discovered dry eye subtype is the short breakup time-type (BUT) of dry eye. The only abnormal finding in this disease is the short BUT, suggesting a relationship with ocular neuropathic pain and eye strain. Recently, data from many studies have accumulated which show that dry eye is a life-style disease. In addition to the treatment of dry eyes, it is becoming possible to prevent the onset by intervening with the daily habits, diet, exercise and sleep, etc. It has been pointed out that oxidative stress is also involved in the pathology of dry eye, and intervention is being carried out by improving diet and taking supplements. Future research will be needed to link clinical findings to the molecular biological findings in the tear film.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Murat Dogru
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Japan; Tsubota Laboratory, Inc., Tokyo, Japan.
| |
Collapse
|
6
|
Sun M, Deng Z, Shi F, Zhou Z, Jiang C, Xu Z, Cui X, Li W, Jing Y, Han B, Zhang W, Xia S. Rebamipide-loaded chitosan nanoparticles accelerate prostatic wound healing by inhibiting M1 macrophage-mediated inflammation via the NF-κB signaling pathway. Biomater Sci 2019; 8:912-925. [PMID: 31829321 DOI: 10.1039/c9bm01512d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A large proportion of benign prostatic hyperplasia (BPH) patients suffer from lower urinary tract symptoms after surgery due to the presence of prostatic urothelium wounds. Rebamipide (RBM) exerts wound healing promotion and anti-inflammatory effects on various tissues, including the urothelium. However, intravesical administration of RBM is hindered due to its low solubility and resulting unsustainable drug concentrations in the bladder. In this study, RBM-loaded chitosan nanoparticles (RBM/CTS NPs) were prepared using the ionic cross-linking method. Physicochemical characteristics and the wound healing promotion effect, as well as in vitro influence on macrophages were evaluated. The results show that RBM/CTS NPs are spherical with uniform size distribution, while slower and sustained in vitro release of RBM is presented. In vivo, faster wound healing and improved re-epithelialization progress were observed after treatment with RBM/CTS NPs in a model of thulium laser resection of the prostate (TmLRP). The degree of local inflammatory response decreased, as confirmed by decreasing numbers of pro-inflammatory M1 phenotype macrophages and levels of IL-1β, IL-6, IL-12 and TNF-α in the urine of canines. We also found that RBM/CTS NPs suppress macrophage M1 polarization induced by lipopolysaccharide and interferon-γ and inhibit the activation of the NF-κB signaling pathway. Therefore, as a novel therapeutic strategy, intravesical administration of RBM/CTS NPs can effectively avoid drug intolerance and drug wastage, accelerating the postoperative wound repairing of the prostatic urethra by suppressing macrophage M1 phenotype polarization.
Collapse
Affiliation(s)
- Menghao Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Zheng Deng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Zheng Zhou
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Chenyi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Zhilu Xu
- College of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China.
| | - Xiaoming Cui
- College of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China.
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang 261053, Shandong, China and Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yifeng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China. and Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China. and Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China. and Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China. and Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|