1
|
Nims RW, Ijaz MK. Virucidal Approaches for Hemorrhagic Fever Viruses. Viruses 2025; 17:663. [PMID: 40431675 PMCID: PMC12115516 DOI: 10.3390/v17050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
We have reviewed the primary literature on the virucidal efficacy of microbicidal active ingredients, formulated microbicides, and physical inactivation approaches (heat, irradiation) for hemorrhagic fever viruses (HFVs) (arenaviruses, filoviruses, flaviviruses, hantaviruses, nairoviruses, and phenuiviruses), and for two non-typical HFV paramyxoviruses. As each of these HFVs are large, lipid-enveloped RNA viruses, their susceptibilities to virucidal agents are informed by the so-called hierarchy of susceptibility of pathogens to microbicides. The unique susceptibility of lipid-enveloped viruses to most classes of microbicides is based on the common mechanisms of action of envelope-disrupting microbicides. Despite this, due to the relatively great lethality of these viruses, it is prudent (where possible) to confirm the expected efficacies of inactivation approaches in testing involving the HFVs themselves (as opposed to less lethal surrogate viruses) using field-relevant methods. Empirical data for virucidal activities of microbicidal active ingredients, formulated microbicides, and physical inactivation approaches, such as heat, ultraviolet light, and gamma irradiation, that were collected specifically for HFVs have been reviewed and summarized in this paper. These empirical data for surface and hand hygiene approaches, liquid inactivation approaches, and approaches for rendering diagnostic samples safe to handle inform non-pharmaceutical interventions intended to mitigate transmission risk associated with these HFVs.
Collapse
Affiliation(s)
| | - M. Khalid Ijaz
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ 07645, USA
| |
Collapse
|
2
|
Focosi D, Colavita F, Meschi S, Lalle E, Franchini M, Maggi F. Oropouche Virus: Implications for Transfusion Services. Rev Med Virol 2025; 35:e70031. [PMID: 40064585 DOI: 10.1002/rmv.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 05/13/2025]
Abstract
In 2024, a novel recombinant of the Oropouche virus emerged as a potential threat. This virus has caused a significant outbreak in Brazil and Cuba, with imported cases subsequently reported in the USA and Europe. This review summarises the existing knowledge on the Oropouche virus, and discusses potential risk mitigation strategies for the transfusion community.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Francesca Colavita
- National Institute for Infectious Diseases "Lazzaro Spallanzani"- IRCCS, Rome, Italy
| | - Silvia Meschi
- National Institute for Infectious Diseases "Lazzaro Spallanzani"- IRCCS, Rome, Italy
| | - Eleonora Lalle
- National Institute for Infectious Diseases "Lazzaro Spallanzani"- IRCCS, Rome, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, "Carlo Poma" Hospital, Mantua, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani"- IRCCS, Rome, Italy
| |
Collapse
|
3
|
Kohs J, Lichtenthäler T, Gouma C, Cho HK, Reith A, Kramer A, Reiche S, Zwicker P. Studies on the Virucidal Effects of UV-C of 233 nm and 275 nm Wavelengths. Viruses 2024; 16:1904. [PMID: 39772211 PMCID: PMC11680280 DOI: 10.3390/v16121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Among the physical decontamination methods, treatment with ultraviolet (UV) radiation is a suitable means of preventing viral infections. Mercury vapor lamps (254 nm) used for room decontamination are potentially damaging to human skin (radiation) and harmful to the environment (mercury). Therefore, other UV-C wavelengths (100-280 nm) may be effective for virus inactivation on skin without damaging it, e.g., far-UV-C radiation with a wavelength of 233 nm, which is absorbed in the outer layer of the skin and thus does not reach the deeper layers of the skin. For room disinfection, 275 nm UV-C LED lamps could be a more environmentally friendly alternative, since toxic mercury is avoided. A carrier test using multiple viruses was used to determine the TCID50/mL value on stainless steel, PVC, and glass carriers. In addition to the inactivation kinetics (233 nm), the necessary UV-C dose for 4 lg inactivation (275 nm) was investigated. The impact of irradiance on the inactivation efficacy was also assessed. The inactivation of the viruses was a function of the radiation dose. UV-C-radiation at 233 nm (80 mJ/cm2) inactivated from 1.49 ± 0.08 to 4.28 ± 0.18 lg depending on the virus used. To achieve a 4 lg inactivation (275 nm) for enveloped viruses, doses of up to 70 mJ/cm2 (SuHV-1) were sufficient. For non-enveloped viruses, a maximum dose of 600 mJ/cm2 (MS2) was necessary. Enveloped viruses were inactivated with lower doses compared to non-enveloped viruses. Higher radiation doses were required for inactivation at 275 nm in comparison to 254 nm. A more environmentally friendly alternative to mercury vapor lamps is available with 275 nm LED emitters. Radiation at 233 nm could serve as an additional prophylactic or therapeutic measure for virus inactivation in direct contact with human skin.
Collapse
Affiliation(s)
- Jessica Kohs
- Department of Experimental Animal Facilities and Biorisk Management (ATB), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald Insel Riems, Germany
| | - Tom Lichtenthäler
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Carolyn Gouma
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Hyun Kyong Cho
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut Für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
| | - Andreas Reith
- ams OSRAM International GmbH, Leibnizstr. 4, 93055 Regensburg, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management (ATB), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald Insel Riems, Germany
| | - Paula Zwicker
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| |
Collapse
|
4
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024; 18:969-987. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
5
|
Piccin A, Allameddine A, Spizzo G, Lappin KM, Prati D. Platelet Pathogen Reduction Technology-Should We Stay or Should We Go…? J Clin Med 2024; 13:5359. [PMID: 39336845 PMCID: PMC11432127 DOI: 10.3390/jcm13185359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The recent COVID-19 pandemic has significantly challenged blood transfusion services (BTS) for providing blood products and for keeping blood supplies available. The possibility that a similar pandemic event may occur again has induced researchers and transfusionists to investigate the adoption of new tools to prevent and reduce these risks. Similarly, increased donor travelling and globalization, with consequent donor deferral and donor pool reduction, have contributed to raising awareness on this topic. Although recent studies have validated the use of pathogen reduction technology (PRT) for the control of transfusion-transmitted infections (TTI) this method is not a standard of care despite increasing adoption. We present a critical commentary on the role of PRT for platelets and on associated problems for blood transfusion services (BTS). The balance of the cost effectiveness of adopting PRT is also discussed.
Collapse
Affiliation(s)
- Andrea Piccin
- Northern Ireland Blood Transfusion Service (NIBTS), Belfast BT9 7TS, UK
- Department of Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, 38122 Trento, Italy
| | | | - Gilbert Spizzo
- Department of Oncology, Brixen Hospital, 39042 Bolzano, Italy
| | - Katrina M Lappin
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Daniele Prati
- Servizio Trasfusionale, Ospedale Ca' Granda, 20122 Milano, Italy
| |
Collapse
|
6
|
van der Schans M, Yu J, de Vries A, Martin G. Estimation of the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm irradiation using CFD-based room disinfection simulations. Sci Rep 2024; 14:15963. [PMID: 38987323 PMCID: PMC11237116 DOI: 10.1038/s41598-024-63472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
The recent COVID-19 pandemic has raised interest in efficient air disinfection solutions. The application of germicidal ultraviolet (GUV) irradiation is an excellent contender to prevent airborne transmission of COVID-19, as well as other existing and future infectious airborne diseases. While GUV has already been proven effective in inactivating SARS-CoV-2, quantitative data on UV susceptibility and dose requirements, needed to predict and optimize the performance of GUV solutions, is still limited. In this study, the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm ultraviolet (UV) irradiation is investigated. This is done by employing 3D computational fluid dynamics based simulations of SARS-CoV-2 inactivation in a test chamber equipped with an upper-room UV-C luminaire and comparing the results to previously published measurements performed in the same test chamber. The UV susceptibility found in this study is (0.6 ± 0.2) m2/J, which is equivalent to a D90 dose between 3 and 6 J/m2. These values are in the same range as previous estimations based on other corona viruses and inactivation data reported in literature.
Collapse
Affiliation(s)
| | - Joan Yu
- Signify, High Tech Campus 7, 5656AE, Eindhoven, The Netherlands
| | - Adrie de Vries
- Signify, High Tech Campus 7, 5656AE, Eindhoven, The Netherlands
| | | |
Collapse
|
7
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
8
|
Emadi E, Hamidi Alamdari D, Attaran D, Attaran S. Application of methylene blue for the prevention and treatment of COVID-19: A narrative review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:780-792. [PMID: 38800024 PMCID: PMC11127079 DOI: 10.22038/ijbms.2024.71871.15617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/06/2024] [Indexed: 05/29/2024]
Abstract
The newest virus from the SARS family of viruses called acute syndrome-coronavirus-2 (SARS-CoV-2), which causes COVID-19 disease, was identified in China at the end of 2019. In March 2020, after it spread to 29 additional countries, it was declared a pandemic by the World Health Organization (WHO). SARS-CoV-2 infection mainly starts through the respiratory tract and causes a wide spectrum of symptoms from asymptomatic infections to acute respiratory distress syndrome with multi-organ failure and vasoplegic shock. Among the many immunomodulatory and antiviral drugs that have been studied for the treatment of COVID-19, methylene blue (MB) may play an influential role. This article reviews the history of MB applications, the antiviral effects of MB against SARS-CoV-2, and the results of in vivo and in vitro studies of the use of MB in COVID-19. Based on studies, MB can simultaneously affect most of the host's harmful responses caused by SARS-CoV-2 infection due to its multiple properties, including anti-hypoxemia, anti-oxidant, immune system modulator, and antiviral. The use of MB is associated with a reduction in the possibility of getting infection, and mortality, and can be used as a safe, effective, cheap, and available treatment option with minimal side effects for the clinical management of COVID-19.
Collapse
Affiliation(s)
- Elaheh Emadi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Hamidi Alamdari
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Attaran
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Attaran
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Blacksell SD, Dhawan S, Kusumoto M, Le KK, Summermatter K, O'Keefe J, Kozlovac J, Almuhairi SS, Sendow I, Scheel CM, Ahumibe A, Masuku ZM, Bennett AM, Kojima K, Harper DR, Hamilton K. The Biosafety Research Road Map: The Search for Evidence to Support Practices in the Laboratory-Crimean Congo Haemorrhagic Fever Virus and Lassa Virus. APPLIED BIOSAFETY 2023; 28:216-229. [PMID: 38090357 PMCID: PMC10712363 DOI: 10.1089/apb.2022.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Introduction Crimean Congo Hemorrhagic Fever (CCHF) virus and Lassa virus (LASV) are zoonotic agents regarded as high-consequence pathogens due to their high case fatality rates. CCHF virus is a vector-borne disease and is transmitted by tick bites. Lassa virus is spread via aerosolization of dried rat urine, ingesting infected rats, and direct contact with or consuming food and water contaminated with rat excreta. Methods The scientific literature for biosafety practices has been reviewed for both these two agents to assess the evidence base and biosafety-related knowledge gaps. The review focused on five main areas, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results There is a lack of data on the safe collection and handling procedures for tick specimens and the infectious dose from an infective tick bite for CCHF investigations. In addition, there are gaps in knowledge about gastrointestinal and contact infectious doses for Lassa virus, sample handling and transport procedures outside of infectious disease areas, and the contribution of asymptomatic carriers in viral circulation. Conclusion Due to the additional laboratory hazards posed by these two agents, the authors recommend developing protocols that work effectively and safely in highly specialized laboratories in non-endemic regions and a laboratory with limited resources in endemic areas.
Collapse
Affiliation(s)
- Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marina Kusumoto
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kim Khanh Le
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Joseph O'Keefe
- Ministry for Primary Industries, Wellington, New Zealand
| | - Joseph Kozlovac
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | | | - Indrawati Sendow
- Research Center for Veterinary Science, National Research and Innovation Agency, Indonesia
| | - Christina M. Scheel
- WHO Collaborating Center for Biosafety and Biosecurity, Office of the Associate Director for Laboratory Science, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anthony Ahumibe
- Nigeria Centre for Disease Control, Abuja and Prevention, Nigeria
| | - Zibusiso M. Masuku
- National Institute for Communicable Diseases of the National Health Laboratory Services, Sandringham, South Africa
| | | | - Kazunobu Kojima
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - David R. Harper
- The Royal Institute of International Affairs, London, United Kingdom
| | - Keith Hamilton
- World Organisation for Animal Health (OIE), Paris, France
| |
Collapse
|
10
|
Kovalenko I, Kholina E, Fedorov V, Khruschev S, Vasyuchenko E, Meerovich G, Strakhovskaya M. Interaction of Methylene Blue with Severe Acute Respiratory Syndrome Coronavirus 2 Envelope Revealed by Molecular Modeling. Int J Mol Sci 2023; 24:15909. [PMID: 37958892 PMCID: PMC10650479 DOI: 10.3390/ijms242115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Methylene blue has multiple antiviral properties against Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2). The ability of methylene blue to inhibit different stages of the virus life cycle, both in light-independent and photodynamic processes, is used in clinical practice. At the same time, the molecular aspects of the interactions of methylene blue with molecular components of coronaviruses are not fully understood. Here, we use Brownian dynamics to identify methylene blue binding sites on the SARS-CoV-2 envelope. The local lipid and protein composition of the coronavirus envelope plays a crucial role in the binding of this cationic dye. Viral structures targeted by methylene blue include the S and E proteins and negatively charged lipids. We compare the obtained results with known experimental data on the antiviral effects of methylene blue to elucidate the molecular basis of its activity against coronaviruses.
Collapse
Affiliation(s)
- Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
- Scientific and Educational Mathematical Center «Sofia Kovalevskaya Northwestern Center for Mathematical Research», Pskov State University, Pskov 180000, Russia
| | - Ekaterina Kholina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Sergei Khruschev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Ekaterina Vasyuchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University “MEPHI”, Moscow 115409, Russia
| | - Marina Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| |
Collapse
|
11
|
Strizzi S, Bernardo L, D'Ursi P, Urbinati C, Bianco A, Limanaqi F, Manconi A, Milanesi M, Macchi A, Di Silvestre D, Cavalleri A, Pareschi G, Rusnati M, Clerici M, Mauri P, Biasin M. An innovative strategy to investigate microbial protein modifications in a reliable fast and sensitive way: A therapy oriented proof of concept based on UV-C irradiation of SARS-CoV-2 spike protein. Pharmacol Res 2023; 194:106862. [PMID: 37479104 DOI: 10.1016/j.phrs.2023.106862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The characterization of modifications of microbial proteins is of primary importance to dissect pathogen lifecycle mechanisms and could be useful in identifying therapeutic targets. Attempts to solve this issue yielded only partial and non-exhaustive results. We developed a multidisciplinary approach by coupling in vitro infection assay, mass spectrometry (MS), protein 3D modelling, and surface plasma resonance (SPR). As a proof of concept, the effect of low UV-C (273 nm) irradiation on SARS-CoV-2 spike (S) protein was investigated. Following UV-C exposure, MS analysis identified, among other modifications, the disruption of a disulphide bond within the conserved S2 subunit of S protein. Computational analyses revealed that this bond breakage associates with an allosteric effect resulting in the generation of a closed conformation with a reduced ability to bind the ACE2 receptor. The UV-C-induced reduced affinity of S protein for ACE2 was further confirmed by SPR analyses and in vitro infection assays. This comprehensive approach pinpoints the S2 domain of S protein as a potential therapeutic target to prevent SARS-CoV-2 infection. Notably, this workflow could be used to screen a wide variety of microbial protein domains, resulting in a precise molecular fingerprint and providing new insights to adequately address future epidemics.
Collapse
Affiliation(s)
- Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Letizia Bernardo
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Chiara Urbinati
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Andrea Bianco
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Andrea Manconi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Maria Milanesi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy; Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Macchi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit, IRCCS Foundation, Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy
| | - Giovanni Pareschi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Marco Rusnati
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, íItaly
| | - PierLuigi Mauri
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy; Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, 56127 Pisa, Italy.
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| |
Collapse
|
12
|
Li LX, Nissly RH, Swaminathan A, Bird IM, Boyle NR, Nair MS, Greenawalt DI, Gontu A, Cavener VS, Sornberger T, Freihaut JD, Kuchipudi SV, Bahnfleth WP. Inactivation of HCoV-NL63 and SARS-CoV-2 in aqueous solution by 254 nm UV-C. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112755. [PMID: 37423001 DOI: 10.1016/j.jphotobiol.2023.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Ultraviolet germicidal irradiation (UVGI) is a highly effective means of inactivating many bacteria, viruses, and fungi. UVGI is an attractive viral mitigation strategy against coronaviruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-2019 (COVID-19) pandemic. This investigation measures the susceptibility of two human coronaviruses to inactivation by 254 nm UV-C radiation. Human coronavirus NL63 and SARS-CoV-2 were irradiated in a collimated, dual-beam, aqueous UV reactor. By measuring fluence and integrating it in real-time, this reactor accounts for the lamp output transients during UVGI exposures. The inactivation rate constants of a one-stage exponential decay model were determined to be 2.050 cm2/mJ and 2.098 cm2/mJ for the NL63 and SARS-CoV-2 viruses, respectively. The inactivation rate constant for SARS-CoV-2 is within 2% of that of NL63, indicating that in identical inactivation environments, very similar UV 254 nm deactivation susceptibilities for these two coronaviruses would be achieved. Given the inactivation rate constant obtained in this study, doses of 1.1 mJ/cm2, 2.2 mJ/cm2, and 3.3 mJ/cm2 would result in a 90%, 99%, and 99.9% inactivation of the SARS-CoV-2 virus, respectively. The inactivation rate constant obtained in this study is significantly higher than values reported from many 254 nm studies, which suggests greater UV susceptibility to the UV-C than what was believed. Overall, results from this study indicate that 254 nm UV-C is effective for inactivation of human coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Lily X Li
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ruth H Nissly
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Anand Swaminathan
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ian M Bird
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Nina R Boyle
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Meera Surendran Nair
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Denver I Greenawalt
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Abhinay Gontu
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Victoria S Cavener
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Ty Sornberger
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - James D Freihaut
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| | - Suresh V Kuchipudi
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America; Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America.
| | - William P Bahnfleth
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| |
Collapse
|
13
|
Pereira AR, Braga DFO, Vassal M, Gomes IB, Simões M. Ultraviolet C irradiation: A promising approach for the disinfection of public spaces? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163007. [PMID: 36965719 DOI: 10.1016/j.scitotenv.2023.163007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Ultraviolet irradiation C (UVC) has emerged as an effective strategy for microbial control in indoor public spaces. UVC is commonly applied for air, surface, and water disinfection. Unlike common 254 nm UVC, far-UVC at 222 nm is considered non-harmful to human health, being safe for occupied spaces, and still effective for disinfection purposes. Therefore, and allied to the urgency to mitigate the current pandemic of SARS-CoV-2, an increase in UVC-based technology devices appeared in the market with levels of pathogens reduction higher than 99.9 %. This environmentally friendly technology has the potential to overcome many of the limitations of traditional chemical-based disinfection approaches. The novel UVC-based devices were thought to be used in public indoor spaces such as hospitals, schools, and public transport to minimize the risk of pathogens contamination and propagation, saving costs by reducing manual cleaning and equipment maintenance provided by manpower. However, a lack of information about UVC-based parameters and protocols for disinfection, and controversies regarding health and environmental risks still exist. In this review, fundamentals on UVC disinfection are presented. Furthermore, a deep analysis of UVC-based technologies available in the market for the disinfection of public spaces is addressed, as well as their advantages and limitations. This comprehensive analysis provides valuable inputs and strategies for the development of effective, reliable, and safe UVC disinfection systems.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Daniel F O Braga
- SpinnerDynamics, Lda., Rua da Junta de Freguesia 194, Escariz, 4540-322 Arouca, Portugal
| | - Mariana Vassal
- SpinnerDynamics, Lda., Rua da Junta de Freguesia 194, Escariz, 4540-322 Arouca, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
14
|
Gorman S. The inhibitory and inactivating effects of visible light on SARS-CoV-2: A narrative update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023; 15:100187. [PMID: 37288364 PMCID: PMC10207839 DOI: 10.1016/j.jpap.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Prior to the coronavirus disease-19 (COVID-19) pandemic, the germicidal effects of visible light (λ = 400 - 700 nm) were well known. This review provides an overview of new findings that suggest there are direct inactivating effects of visible light - particularly blue wavelengths (λ = 400 - 500 nm) - on exposed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions, and inhibitory effects on viral replication in infected cells. These findings complement emerging evidence that there may be clinical benefits of orally administered blue light for limiting the severity of COVID-19. Possible mechanisms of action of blue light (e.g., regulation of reactive oxygen species) and important mediators (e.g., melatonin) are discussed.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, PO Box 855, Perth, Western Australia 6872, Australia
| |
Collapse
|
15
|
de Oliveira SV, Neves FDD, dos Santos DC, Monteiro MBB, Schaufelberger MS, Motta BN, de Oliveira IP, Setúbal Destro Rodrigues MF, Franco ALDS, Cecatto RB. The effectiveness of phototherapy for surface decontamination against SARS-Cov-2. A systematic review. JOURNAL OF BIOPHOTONICS 2023; 16:e202200306. [PMID: 36560919 PMCID: PMC9880673 DOI: 10.1002/jbio.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 appeared in December 2019, needing efforts of science. Besides, a range of light therapies (photodynamic therapy, ultraviolet [UV], laser) has shown scientific alternatives to conventional decontamination therapies. Investigating the efficacy of light-based therapies for environment decontamination against SARS-CoV2, a PRISMA systematic review of Phototherapies against SARS-CoV or MERS-CoV species discussing changes in viral RT-PCR was done. After searching MEDLINE/PubMed, EMBASE, and Literatura Latino-Americana e do Caribe em Ciências da Saúde we have found studies about cell cultures irradiation (18), blood components irradiation (10), N95 masks decontamination (03), inanimate surface decontamination (03), aerosols decontamination (03), hospital rooms irradiation (01) with PDT, LED, and UV therapy. The best quality results showed an effective low time and dose UV irradiation for environments and inanimate surfaces without human persons as long as the devices have safety elements dependent on the surfaces, viral charge, humidity, radiant exposure. To interpersonal contamination in humans, PDT or LED therapy seems very promising and are encouraged.
Collapse
Affiliation(s)
- Susyane Vieira de Oliveira
- Post Graduate Program Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVESao PauloBrazil
| | | | | | | | | | | | | | | | | | - Rebeca Boltes Cecatto
- Post Graduate Program Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVESao PauloBrazil
- Instituto do Cancer do Estado de Sao Paulo, School of Medicine of the University of Sao PauloSao PauloBrazil
| |
Collapse
|
16
|
Virtual screening and computational simulation analysis of antimicrobial photodynamic therapy using propolis-benzofuran A to control of Monkeypox. Photodiagnosis Photodyn Ther 2023; 41:103208. [PMID: 36417972 PMCID: PMC9675939 DOI: 10.1016/j.pdpdt.2022.103208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Monkeypox is a viral zoonotic disease and there are no available treatments that specifically target the monkeypox virus. Antimicrobial photodynamic therapy (aPDT) is a non-invasive approach that has been introduced as a targeted adjuvant treatment against various microbial infections. In this study, we used a computational strategy to investigate the potential of aPDT using propolis-benzofuran A against the Monkeypox virus. METHODS In this in silico study, the evaluation of drug-likeness, molecular properties, and bioactivity of propolis-benzofuran A was carried out using SwissADME. Pro-Tox II and OSIRIS servers were used to identify the organ toxicities and toxicological endpoints of propolis-benzofuran A. Molecular docking approach was employed to screen the potential binding modes of propolis-benzofuran A ligand with the Monkeypox virus A48R protein (PDB ID: 2V54). RESULTS The results of the computational investigation revealed that propolis-benzofuran A obeyed all the criteria of Lipinski's rule of five and exhibited drug-likeness. The photosensitizing agent tested was categorized as toxicity class-5 and was found to be non-hepatotoxic, non-carcinogenic, non-mutagenic, and non-cytotoxic. The docking studies employing a predicted three-dimensional model of Monkeypox virus A48R protein with propolis-benzofuran A ligand exhibited good binding affinity (-7.84 kcal/mol). DISCUSSION The computational simulation revealed that propolis-benzofuran A had a strong binding affinity with the Monkeypox virus A48R protein. Hence, aPDT based on this natural photosensitizer can be proposed as an adjuvant treatment against the Monkeypox virus.
Collapse
|
17
|
Hobson‐Peters J, Amarilla AA, Rustanti L, Marks DC, Roulis E, Khromykh AA, Modhiran N, Watterson D, Reichenberg S, Tolksdorf F, Sumian C, Seltsam A, Gravemann U, Faddy HM. Inactivation of SARS-CoV-2 infectivity in platelet concentrates or plasma following treatment with ultraviolet C light or with methylene blue combined with visible light. Transfusion 2023; 63:288-293. [PMID: 36573801 PMCID: PMC9880728 DOI: 10.1111/trf.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unlikely to be a major transfusion-transmitted pathogen; however, convalescent plasma is a treatment option used in some regions. The risk of transfusion-transmitted infections can be minimized by implementing Pathogen Inactivation (PI), such as THERAFLEX MB-plasma and THERAFLEX UV-Platelets systems. Here we examined the capability of these PI systems to inactivate SARS-CoV-2. STUDY DESIGN AND METHODS SARS-CoV-2 spiked plasma units were treated using the THERAFLEX MB-Plasma system in the presence of methylene blue (~0.8 μmol/L; visible light doses: 20, 40, 60, and 120 [standard] J/cm2 ). SARS-CoV-2 spiked platelet concentrates (PCs) were treated using the THERAFLEX UV-platelets system (UVC doses: 0.05, 0.10, 0.15, and 0.20 [standard] J/cm2 ). Samples were taken prior to the first and after each illumination dose, and viral infectivity was assessed using an immunoplaque assay. RESULTS Treatment of spiked plasma with the THERAFLEX MB-Plasma system resulted in an average ≥5.03 log10 reduction in SARS-CoV-2 infectivity at one third (40 J/cm2 ) of the standard visible light dose. For the platelet concentrates (PCs), treatment with the THERAFLEX UV-Platelets system resulted in an average ≥5.18 log10 reduction in SARS-CoV-2 infectivity at the standard UVC dose (0.2 J/cm2 ). CONCLUSIONS SARS-CoV-2 infectivity was reduced in plasma and platelets following treatment with the THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems, to the limit of detection, respectively. These PI technologies could therefore be an effective option to reduce the risk of transfusion-transmitted emerging pathogens.
Collapse
Affiliation(s)
- Jody Hobson‐Peters
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia,Australian Infectious Diseases Research Centre, Global Virus Network Centre of ExcellenceBrisbaneQueenslandAustralia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Lina Rustanti
- Research and Development, Australian Red Cross LifebloodBrisbaneQueenslandAustralia
| | - Denese C. Marks
- Research and Development, Australian Red Cross LifebloodBrisbaneQueenslandAustralia
| | - Eileen Roulis
- Research and Development, Australian Red Cross LifebloodBrisbaneQueenslandAustralia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia,Australian Infectious Diseases Research Centre, Global Virus Network Centre of ExcellenceBrisbaneQueenslandAustralia
| | - Naphak Modhiran
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Daniel Watterson
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia,Australian Infectious Diseases Research Centre, Global Virus Network Centre of ExcellenceBrisbaneQueenslandAustralia
| | | | | | | | - Axel Seltsam
- Bavarian Red Cross Blood ServiceNurembergGermany
| | | | - Helen M. Faddy
- Research and Development, Australian Red Cross LifebloodBrisbaneQueenslandAustralia,School of Health and Behavioural SciencesUniversity of the Sunshine CoastSunshine CoastQueenslandAustralia
| |
Collapse
|
18
|
Kaushik N, Mitra S, Baek EJ, Nguyen LN, Bhartiya P, Kim JH, Choi EH, Kaushik NK. The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives. J Adv Res 2023; 43:59-71. [PMID: 36585115 PMCID: PMC8905887 DOI: 10.1016/j.jare.2022.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Outbreaks of airborne viral infections, such as COVID-19, can cause panic regarding other severe respiratory syndrome diseases that may develop and affect public health. It is therefore necessary to develop control methods that offer protection against such viruses. AIM OF REVIEW To identify a feasible solution for virus deactivation, we critically reviewed methods of generating reactive oxygen species (ROS), which can attack a wide range of molecular targets to induce antiviral activity, accounting for their flexibility in facilitating host defense mechanisms against a comprehensive range of pathogens. Recently, the role of ROS in microbial decontamination has been critically investigated as a major topic in infectious diseases. ROS can eradicate pathogens directly by inducing oxidative stress or indirectly by promoting pathogen removal through numerous non-oxidative mechanisms, including autophagy, T-cell responses, and pattern recognition receptor signaling. KEY SCIENTIFIC CONCEPTS OF REVIEW In this article, we reviewed possible methods for the in vitro generation of ROS with antiviral activity. Furthermore, we discuss, in detail, the novel and environmentally friendly cold plasma delivery system in the destruction of viruses. This review highlights the potential of ROS as therapeutic mediators to modernize current techniques and improvement on the efficiency of inactivating SARS-CoV2 and other viruses.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Linh Nhat Nguyen
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea,Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Viet Nam
| | - Pradeep Bhartiya
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea,Corresponding author
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea,Corresponding author
| |
Collapse
|
19
|
Abolmaaty A, Amin DH, Abd El-Kader RMM, ELsayed AF, Soliman BSM, Elbahnasawy AS, Sitohy M. Consolidating food safety measures against COVID-19. J Egypt Public Health Assoc 2022; 97:21. [PMID: 36319882 PMCID: PMC9626693 DOI: 10.1186/s42506-022-00112-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Abstract
Background The world is facing an extraordinarily unprecedented threat from the COVID-19 pandemic triggered by the SARS-CoV-2 virus. Global life has turned upside down, and that several countries closed their borders, simultaneously with the blockage of life cycle as a result of the shutdown of the majority of workplaces except the food stores and some few industries. Main body In this review, we are casting light on the nature of COVID-19 infection and spread, the persistence of SARS-CoV-2 virus in food products, and revealing the threats arising from the transmission of COVID-19 in food environment between stakeholders and even customers. Furthermore, we are exploring and identifying some practical aspects that must be followed to minimize infection and maintain a safe food environment. We also present and discuss some World Health Organization (WHO) guidelines-based regulations in food safety codes, destined to sustain the health safety of all professionals working in the food industry under this current pandemic. Conclusion The information compiled in this manuscript is supporting and consolidating the safety attributes in food environment, for a prospective positive impact on consumer confidence in food safety and the citizens’ public health in society. Some research is suggested on evaluating the use and potentiality of native and chemical modified basic proteins as possible practices aiming at protecting food from bacterial and viral contamination including COVID-19.
Collapse
Affiliation(s)
- Assem Abolmaaty
- Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Dina H Amin
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 1566, Egypt.
| | - Reham M M Abd El-Kader
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Alaa F ELsayed
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 1566, Egypt
| | - Basma S M Soliman
- Department of Biochemistry and Nutrition, National Food Safety Authority, Cairo, Egypt
| | - Amr S Elbahnasawy
- Department of Bioecology, Hygiene and Public Health, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Nutrition and Food Sciences, National Research Centre, Giza, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
20
|
Validation of Viral Inactivation Protocols for Therapeutic Blood Products against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-COV-2). Viruses 2022; 14:v14112419. [PMID: 36366517 PMCID: PMC9698982 DOI: 10.3390/v14112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Therapeutic blood products including convalescent plasma/serum and immunoglobulins concentrated from convalescent plasma, such as intravenous immunoglobulins or hyperimmune globulins, and monoclonal antibodies are passive immunotherapy options for novel coronavirus disease 2019 (COVID-19). They have been shown to improve the clinical status and biological and radiological parameters in some groups of COVID-19 patients. However, blood products are still potential sources of virus transmission in recipients. The use of pathogen reduction technology (PRT) should increase the safety of the products. The purpose of this study was to determine the impact of solvent/detergents (S/D) procedures on SARS-COV-2 infectivity elimination in the plasma of donors but also on COVID-19 convalescent serum (CCS) capacity to neutralize SARS-COV-2 infectivity. In this investigation, S/D treatment for all experiments was performed at a shortened process time (30 min). We first evaluated the impact of S/D treatments (1% TnBP/1% TritonX-45 and 1% TnBP/1% TritonX-100) on the inactivation of SARS-COV-2 pseudoparticles (SARS-COV-2pp)-spiked human plasma followed by S/D agent removal using a Sep-Pak Plus C18 cartridge. Both treatments were able to completely inactivate SARS-COV-2pp infectivity to an undetectable level. Moreover, the neutralizing activity of CCS against SARS-COV-2pp was preserved after S/D treatments. Our data suggested that viral inactivation methods using such S/D treatments could be useful in the implementation of viral inactivation/elimination processes of therapeutic blood products against SARS-COV-2.
Collapse
|
21
|
Gravemann U, Engelmann M, Kinast V, Burkard T, Behrendt P, Schulze TJ, Todt D, Steinmann E. Hepatitis E virus is effectively inactivated by methylene blue plus light treatment. Transfusion 2022; 62:2200-2204. [PMID: 36125237 DOI: 10.1111/trf.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Photodynamic treatment with methylene blue (MB) and visible light is a well-established pathogen inactivation system for human plasma. This technique is routinely used in different countries. MB/light treatment was shown to inactivate several transfusion-transmittable viruses, but its efficiency for the inactivation of the quasi-enveloped hepatitis E virus (HEV) has not yet been investigated. MATERIALS AND METHODS Plasma units were spiked with cell culture-derived HEV and treated with the THERAFLEX MB-Plasma system using various light doses (30, 60, 90, and 120 J/cm2 ). HEV titers in pre- and post-treatment samples were determined by virus titration and a large-volume plating assay to improve the detection limit of the virus assay. RESULTS THERAFLEX MB-Plasma efficiently inactivated HEV in human plasma. Even the lowest light dose of 30 J/cm2 inactivated HEV down to the limit of detection, with a mean log reduction factor of greater than 2.4 for the total process. CONCLUSION Our study demonstrates that the THERAFLEX MB-Plasma system effectively inactivates HEV in human plasma.
Collapse
Affiliation(s)
- Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Michael Engelmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Volker Kinast
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.,Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas Burkard
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Patrick Behrendt
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover, Germany
| | | | - Daniel Todt
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.,German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany
| |
Collapse
|
22
|
Ruetalo N, Berger S, Niessner J, Schindler M. Inactivation of aerosolized SARS-CoV-2 by 254 nm UV-C irradiation. INDOOR AIR 2022; 32:e13115. [PMID: 36168221 PMCID: PMC9538331 DOI: 10.1111/ina.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/12/2023]
Abstract
Surface residing SARS-CoV-2 is efficiently inactivated by UV-C irradiation. This raises the question whether UV-C-based technologies are also suitable to decontaminate SARS-CoV-2- containing aerosols and which doses are needed to achieve inactivation. Here, we designed a test bench to generate aerosolized SARS-CoV-2 and exposed the aerosols to a defined UV-C dose. Our results demonstrate that the exposure of aerosolized SARS-CoV-2 with a low average dose in the order of 0.42-0.51 mJ/cm2 UV-C at 254 nm resulted in more than 99.9% reduction in viral titers. Altogether, UV-C-based decontamination of aerosols seems highly effective to achieve a significant reduction in SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| | - Simon Berger
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Jennifer Niessner
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| |
Collapse
|
23
|
Valančiūtė A, Mathieson L, O’Connor RA, Scott JI, Vendrell M, Dorward DA, Akram AR, Dhaliwal K. Phototherapeutic Induction of Immunogenic Cell Death and CD8+ T Cell-Granzyme B Mediated Cytolysis in Human Lung Cancer Cells and Organoids. Cancers (Basel) 2022; 14:4119. [PMID: 36077656 PMCID: PMC9454585 DOI: 10.3390/cancers14174119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Augmenting T cell mediated tumor killing via immunogenic cancer cell death (ICD) is the cornerstone of emerging immunotherapeutic approaches. We investigated the potential of methylene blue photodynamic therapy (MB-PDT) to induce ICD in human lung cancer. Non-Small Cell Lung Cancer (NSCLC) cell lines and primary human lung cancer organoids were evaluated in co-culture killing assays with MB-PDT and light emitting diodes (LEDs). ICD was characterised using immunoblotting, immunofluorescence, flow cytometry and confocal microscopy. Phototherapy with MB treatment and low energy LEDs decreased the proliferation of NSCLC cell lines inducing early necrosis associated with reduced expression of the anti-apoptotic protein, Bcl2 and increased expression of ICD markers, calreticulin (CRT), intercellular cell-adhesion molecule-1 (ICAM-1) and major histocompatibility complex I (MHC-I) in NSCLC cells. MB-PDT also potentiated CD8+ T cell-mediated cytolysis of lung cancer via granzyme B in lung cancer cells and primary human lung cancer organoids.
Collapse
Affiliation(s)
- Asta Valančiūtė
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Layla Mathieson
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard A. O’Connor
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jamie I. Scott
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David A. Dorward
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Ahsan R. Akram
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
24
|
Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2. Sci Rep 2022; 12:14438. [PMID: 36002557 PMCID: PMC9400568 DOI: 10.1038/s41598-022-18513-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
The lack of therapeutic options to fight Covid-19 has contributed to the current global pandemic. Despite the emergence of effective vaccines, development of broad-spectrum antiviral treatment remains a significant challenge, in which antimicrobial photodynamic therapy (aPDT) may play a role, especially at early stages of infection. aPDT of the nares with methylene blue (MB) and non-thermal light has been successfully utilized to inactivate both bacterial and viral pathogens in the perioperative setting. Here, we investigated the effect of MB-aPDT to inactivate human betacoronavirus OC43 and SARS-CoV-2 in vitro and in a proof-of-principle COVID-19 clinical trial to test, in a variety of settings, the practicality, technical feasibility, and short-term efficacy of the method. aPDT yielded inactivation of up to 6-Logs in vitro, as measured by RT-qPCR and infectivity assay. From a photo-physics perspective, the in vitro results suggest that the response is not dependent on the virus itself, motivating potential use of aPDT for local destruction of SARS-CoV-2 and its variants. In the clinical trial we observed variable effects on viral RNA in nasal-swab samples as assessed by RT-qPCR attributed to aPDT-induced RNA fragmentation causing falsely-elevated counts. However, the viral infectivity in clinical nares swabs was reduced in 90% of samples and undetectable in 70% of samples. This is the first demonstration based on quantitative clinical viral infectivity measurements that MB-aPDT is a safe, easily delivered and effective front-line technique that can reduce local SARS-CoV-2 viral load.
Collapse
|
25
|
The Neutrophil-to-Lymphocyte Ratio and the Platelet-to-Lymphocyte Ratio as Predictors of Mortality in Older Adults Hospitalized with COVID-19 in Peru. DISEASE MARKERS 2022; 2022:2497202. [PMID: 35937941 PMCID: PMC9346540 DOI: 10.1155/2022/2497202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Background The prognostic value of the neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) in patients with COVID-19 is rarely described in older adults. We aimed to estimate the prognostic value of NLR and PLR, determining the mortality of adults over 60 years of age hospitalized for COVID-19 in three hospitals in Peru from March to May 2020. Methods We performed a secondary analysis of data from a retrospective cohort carried out in Lambayeque, Peru, from March 18 to May 13, 2020. Older adults hospitalized for COVID-19 were included. The outcome variable was in-hospital mortality by all causes, while the exposure variable was the NLR and PLR (categorized in tertiles and numerically, performing a logarithmic transformation). We included sociodemographic variables, comorbidities, vital functions, laboratory markers, and treatment received during hospital stay. We evaluated the association between NLR and PLR using the hazard ratio (HR) in a Cox regression model. We estimated HR with their respective 95% confidence intervals (95% CI). We estimated cumulative/dynamic time-dependent ROC curves and reported area under the curve ROC (AUC-ROC) for 15-, 30-, and 60-day mortality with their respective simultaneous confidence intervals (confidence bands (CB)). Also, we estimated an optimal cut-off point based on the maximally selected rank statistics. Results A total of 262 hospitalized older adults were analyzed, 71.8% (n = 188) of whom were male with a median age of 70 years (interquartile range: 65-78). The mean NLR and PLR were 16.8 (95% CI: 14.9-18.7; SD: 15.5) and 50.3 (95% CI: 44.6-55.9; SD: 46.3), respectively. The mortality rate was 68.7% (95% CI: 62.7-74.3). The adjusted Cox regression analysis showed that the high NLR (adjusted HR (aHR) = 2.12; 95% CI: 1.43-3.14) and PLR (aHR = 1.90; 95% CI: 1.30-2.79) tertiles were associated with a higher risk of mortality. The maximum AUC-ROC values at 60 days of follow-up for NLR and PLR were 0.713 (95%CB: 0.627-0.800) and 0.697 (95%CB: 0.583-0.754), respectively. Conclusions The NLR and PLR are predictors of higher risk of mortality, and these results suggest that both could be reliable and practical markers for the identification of older adults at high risk of mortality by COVID-19. NLR and PLR have prognostic value, with an AUC greater than 0.5; however, by themselves, they are weak prognostic markers. It is important to carry out future studies incorporating these two markers into preexisting models or designing new ones considering them.
Collapse
|
26
|
Exploring inactivation of SARS-CoV-2, MERS-CoV, Ebola, Lassa, and Nipah viruses on N95 and KN95 respirator material using photoactivated methylene blue to enable reuse. Am J Infect Control 2022; 50:863-870. [PMID: 35908824 PMCID: PMC9329093 DOI: 10.1016/j.ajic.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
Abstract
Background The COVID-19 pandemic resulted in a worldwide shortage of N95 respirators, prompting the development of decontamination methods to enable limited reuse. Countries lacking reliable supply chains would also benefit from the ability to safely reuse PPE. Methylene blue (MB) is a light-activated dye with demonstrated antimicrobial activity used to sterilize blood plasma. Decontamination of respirators using photoactivated MB requires no specialized equipment, making it attractive for use in the field during outbreaks. Methods We examined decontamination of N95 and KN95 respirators using photoactivated MB and 3 variants of SARS-CoV-2, the virus that causes COVID-19; and 4 World Health Organization priority pathogens: Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Lassa virus. Virus inactivation by pretreating respirator material was also tested. Results Photoactivated MB inactivated all tested viruses on respirator material, albeit with varying efficiency. Virus applied to respirator material pre-treated with MB was also inactivated, thus MB pretreatment may potentially protect respirator wearers from virus exposure in real-time. Conclusions These results demonstrate that photoactivated MB represents a cost-effective, rapid, and widely deployable method to decontaminate N95 respirators for reuse during supply shortages.
Collapse
|
27
|
Kabra KB, Lendvay TS, Chen J, Rolley P, Dawson T, Mores CN. Inactivation strategies for SARS-CoV-2 on surgical masks using light-activated chemical dyes. Am J Infect Control 2022; 50:844-848. [PMID: 35908821 PMCID: PMC9329073 DOI: 10.1016/j.ajic.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
Background Methylene blue (MB) and riboflavin (RB) are light-activated dyes with demonstrated antimicrobial activity. They require no specialized equipment, making them attractive for widespread use. Due to COVID-19-related worldwide shortages of surgical masks, simple, safe, and effective decontamination methods for reusing masks have become desirable in clinical and public settings. Material and methods We examined the decontamination of SARS-CoV-2 Beta variant on surgical masks and Revolution-Zero Environmentally Sustainable (RZES) reusable masks using these photoactivated dyes. We pre-treated surgical masks with 2 MB concentrations, 2 RB concentrations, and 2 combinations of MB and RB. We also tested 7 MB concentrations on RZES masks. Results Photoactivated MB consistently inactivated SARS-CoV-2 at >99.9% for concentrations of 2.6 µM or higher within 30 min on RZES masks and 5 µM or higher within 5 min on disposable surgical masks. RB alone showed a lower, yet still significant inactivation (∼93-99%) in these conditions. Discussion MB represents a cost-effective, rapid, and widely deployable decontamination method for SARS-CoV-2. The simplicity of MB formulation makes it ideal for mask pre-treatment in low-resource settings. Conclusions The results demonstrate that MB effectively decontaminates SARS-CoV-2 at concentrations above 5 µM on surgical masks and above 10 µM on RZES masks.
Collapse
|
28
|
Hernández-Regino LM, De Jesús Castillejos-López M, Aquino-Gálvez A, Velasco-Hidalgo L, García-Guzmán A, Aguilar-Ortiz M, Cárdenas-Cardos R, Torres-Espíndola LM. Clinical characteristics and mortality predictors of patients with cancer hospitalized by COVID-19 in a pediatric third-level referral center. Front Pediatr 2022; 10:960334. [PMID: 35967576 PMCID: PMC9366048 DOI: 10.3389/fped.2022.960334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background More than 135 million COVID-19 cases (coronavirus disease 2019) have been reported worldwide until today, with over 2.9 million deaths. Several studies have demonstrated that disease severity is lower in the pediatric population than in adults; however, differences are described in patients with chronic diseases, including oncological patients. Current world literature suggests patients with comorbidities, including cancer, have an increased risk of unfortunate outcomes. Therefore, our objective was to describe the clinical characteristics and epidemiological factors associated with mortality in a cohort of pediatric cancer patients hospitalized for COVID-19. Methods This is a retrospective, descriptive study of the cases of patients with cancer hospitalized for COVID-19. A total of 40 pediatrics were included in the analysis. Data from pediatric patients with COVID-19 included clinical and epidemiological records, laboratory, imaging studies, COVID-19 diagnostic methods, and medical treatment. Results Of the 40 pediatric patients admitted with cancer with a confirmed diagnosis of COVID-19, 42.5% were solid tumors, 40% leukemias, and 17.5% lymphomas. The clinical parameters associated with mortality were stage IV tumor (p = 0.029) and intubation (p < 0.001). The biochemical factors associated with lower survival were thrombocytopenia under 25,000 cells/mm3 (p < 0.001), D-dimer over 1 μg/ml (p = 0.003), clinical malnutrition (p = 0.023), and disseminated intravascular coagulation (p = 0.03). Conclusion Our findings showed that the fever was the most frequent symptom, and the clinical parameters associated with mortality were stage IV tumor, intubation, saturation percentage, RDW, platelets, creatinine, ALT, D-dimer, ferritin, and FiO2 percentage. The thrombocytopenia, D-dimer, nutritional status, and disseminated intravascular coagulation were significantly associated with lower survival.
Collapse
Affiliation(s)
| | - Manuel De Jesús Castillejos-López
- Department of Hospital Epidemiology and Infectology, National Institute of Respiratory Diseases “Ismael Cosío Villegas,”Mexico City, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratory of Molecular Biology, Pulmonary Fibrosis Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas,”Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
29
|
Evaluation and comparison of three virucidal agents on inactivation of Nipah virus. Sci Rep 2022; 12:11365. [PMID: 35790865 PMCID: PMC9255448 DOI: 10.1038/s41598-022-15228-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Modern human activity is profoundly changing our relationship with microorganisms with the startling rise in the rate of emerging infectious diseases. Nipah virus together with Ebola virus and SARS-CoV-2 are prominent examples. Since COVID-19 and the West African Ebola virus disease outbreak, different chemical disinfectants have been developed for preventing the direct spread of viruses and their efficacy has also been evaluated. However, there are currently no published efficacy studies for the chemical disinfection of Nipah virus. In this study, the virucidal efficacy of three disinfectants (Micro-Chem Plus detergent disinfectant cleaner, FWD and Medical EtOH) against Nipah virus was evaluated in quantitative suspension tests including. Our results showed that the > 4 log reduction achieved for all products in inactivating Nipah virus in 15 s. Even, 19% ethanol was able to inactivate Nipah virus when applied for at least 8 min contact time. Comparative analysis displayed virucidal efficacy of each of the evaluated disinfectants against SARS-CoV-2, Ebola virus and Nipah virus, with only minor differences in working concentrations and contact times required for complete inactivation. We expect that our study can assist in decontamination in healthcare settings and high level biosafety laboratories and can be beneficial to control for emerging enveloped viruses.
Collapse
|
30
|
Molecular Modeling and Simulation Analysis of Antimicrobial Photodynamic Therapy Potential for Control of COVID-19. ScientificWorldJournal 2022; 2022:7089576. [PMID: 35685718 PMCID: PMC9174018 DOI: 10.1155/2022/7089576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can enter the host cells by binding the viral surface spike glycoprotein (SG) to angiotensin-converting enzyme 2. Since antiviral photodynamic therapy (aPDT) has been described as a new method for inhibiting viral infections, it is important to evaluate whether it can be used as a photoactivated disinfectant to control COVID-19. In this in silico study, SARS-CoV-2-SG was selected as a novel target for curcumin as a photosensitizer during aPDT to exploit its physicochemical properties, molecular modeling, hierarchical nature of protein structure, and functional analysis using several bioinformatics tools and biological databases. The results of a detailed computational investigation revealed that SARS-CoV-2-SG is most similar to 6VXX_A, with 100% query cover and identity. The predicted structure of SARS-CoV-2-SG displayed that it is a protein with a positive charge and random coil dominates other secondary structures located outside the viral cell. The protein-protein interaction network showed that SARS-CoV-2-SG interacted with ten potential interacting partners. In addition, primary screening of binding modes through molecular docking showed that curcumin desires to bind and interact with residues of SARS-CoV-2-SG as the main site to enhance the yield of aPDT. Overall, the computer simulation reveals that SARS-CoV-2-SG can be a suitable target site for interaction with curcumin during aPDT.
Collapse
|
31
|
Infectivity and Morphology of Bovine Coronavirus Inactivated In Vitro by Cationic Photosensitizers. Viruses 2022; 14:v14051053. [PMID: 35632792 PMCID: PMC9144331 DOI: 10.3390/v14051053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Bovine coronaviruses (BCoVs), which cause gastrointestinal and respiratory diseases in cattle, and are genetically related to the human coronavirus HCoV-OC43, which is responsible for up to 10% of common colds, attract increased attention. We applied the method of photodynamic inactivation with cationic photosensitizers (PSs) to reduce the titers of BCoV and studied the morphological structure of viral particles under various modes of photodynamic exposure. The samples of virus containing liquid with an initial virus titer of 5 Log10 TCID50/mL were incubated with methylene blue (MB) or octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) at concentrations of 1–5 μM for 10 min in the dark at room temperature. After incubation, samples were irradiated with LED (emission with maximum at 663 nm for MB or at 686 nm for Zn-PcChol8+) with light doses of 1.5 or 4 J/cm2. Next, the irradiation titrated virus containing liquid was studied using negative staining transmission electron microscopy. MB and Zn-PcChol8+ at concentrations of 1–5 μM, in combination with red light from LED sources in the low doses of 1.5–4.0 J/cm2, led to a decrease in BCoV titers by at least four orders of magnitude from the initial titer 5 Log10 TCID50/mL. Morphological changes in photodamaged BCoVs with increasing PS concentrations were loss of spikes, change in shape, decreased size of virus particles, destruction of the envelope, and complete disintegration of viruses. BCoV has been found to be sensitive to MB, which is the well-known approved drug, even in the absence of light.
Collapse
|
32
|
Dadkhah M, Matin S, Safarzadeh E, Rezaei N, Negaresh M, Salehzadeh H, Matin S, Sharifiazar A, Abazari M. Hematological Parameters as Diagnostic Factors: Correlation with Severity of COVID-19. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022061. [PMID: 35546008 PMCID: PMC9171848 DOI: 10.23750/abm.v93i2.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/04/2022]
Abstract
Bachground and aim: Coronavirus disease 2019(COVID-19), which is the pandemic of 21st century, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Prognostic factors play an essential role in predicting the patients who need more care. Therefore, the current study aimed to investigate the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) ratio as discriminated indexes in prognosis of patients with COVID-19. METHODS Age, NLR, PLR, white blood cell (WBC), neutrophil count, lymphocyte count and platelet from 1007 hospitalized patients with COVID-19, who were admitted to two referring hospitals in Ardabil, North Western Iran. All confirmed cases divided into non-severe and severe groups. RESULTS 534 (53.4%) males and 473 (47.3 %) females with mean age of 52 years were enrolled in this study. Patients with severe COVID-19 have lower counts of lymphocyte, but have higher NLR, comparing to non-severe patients (P = 0.001). CONCLUSION Elevated NLR can be assumed as an independent biomarker, which could provide a crucial indicator in the monitoring patients with COVID-19 on admission. Increased NLR was correlated with the severity of COVID-19. Assessment of NLR could be proposed to identify high risk individuals with COVID-19.
Collapse
|
33
|
Preservation of anti-SARS-CoV-2 neutralising antibodies in convalescent plasma after pathogen reduction with methylene blue and visible light. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2022; 20:206-212. [PMID: 34369870 PMCID: PMC9068354 DOI: 10.2450/2021.0136-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) is an experimental treatment against SARS-CoV-2. Although there has so far been no evidence of transmission through transfusion, pathogen reduction technologies (PRT) have been applied to CCP to mitigate risk of infectious disease. This study aims to assess the impact of methylene blue (MB) plus visible light PRT on the virus-neutralising activity of the specific antibodies against SARS-CoV-2. MATERIAL AND METHODS Thirty-five plasma doses collected by plasmapheresis from COVID-19 convalescent donors were subjected to MB plus visible light PRT. Anti-SARS-CoV-2 RBD S1 epitope IgGs antibodies were quantified by ELISA. Titres of SARS-CoV-2 neutralising antibodies (NtAbs) were measured before and after the PRT process. A Spearman's correlation was run to determine the relationship between antibody neutralisation ability and SARS-CoV-2 IgG ELISA ratio. Pre- and post-inactivation neutralising antibody titres were evaluated using a Wilcoxon test. RESULTS The plasma pathogen reduction procedure did not diminish NtAbS titres and so did not cause a change in the viral neutralisation capacity of CCP. There was a strong correlation between pre-and post-PRT NtAbs and anti-SARS-CoV-2 IgGs titres. DISCUSSION Our results showed PRT with MB did not impair the CCP passive immunity preserving its potential therapeutic potency. Therefore, PRT of CCP should be recommended to mitigate the risk for transmission of transfusion-associated infectious disease. There is a good correlation between SARS-CoV-2 IgG titres determined by ELISA and the neutralising capacity. This allows blood centres to select CCP donors based on IgG ELISA titres avoiding the much more labour-intensive laboratory processes for determining neutralising antibodies.
Collapse
|
34
|
Rehman Umar A, Hussain K, Aslam Z, Anwar Ul Haq M, Muhammad H, Sirajuddin, Raza Shah M. Ultra-trace level voltammetric sensor for MB in human plasma based on a carboxylic derivative of Calix[4]resorcinarene capped silver nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Arentz J, von der Heide HJ. Evaluation of methylene blue based photodynamic inactivation (PDI) against intracellular B-CoV and SARS-CoV2 viruses under different light sources in vitro as a basis for new local treatment strategies in the early phase of a Covid19 infection. Photodiagnosis Photodyn Ther 2022; 37:102642. [PMID: 34863949 PMCID: PMC8635689 DOI: 10.1016/j.pdpdt.2021.102642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022]
Abstract
The local antiviral photodynamic inactivation (PDI) may prove to be a helpful tool reducing the viral load in the nose and throat area in the early phase of a Covid19 infection. Both the infectivity and the prognosis of SARS-CoV-2 infections in the early phase can depend on the viral load in this area. The aim of our study was to find a simplified PDI therapy option against corona viruses in this region with low dose methylene blue (MB) as photosensitizer and use of LED light instead of laser. As a substitute for SARS-CoV2 viruses we started with BCoV infected U373 cells first. We used an 810nm diode laser with 300mW/cm2 and 100J/cm2 light dose as well as a 590 nm LED and a broadband LED with irradiation intensity of 10,000 lx each (irradiation time 2.5 and 10 min) and concentrations of the sensitizer of 0.001% and 0.0001%. The 0.001% MB sensitizer experiments showed similar results with all exposures. The logarithmic reduction factor varied between ≥ 5.29 and ≥ 5.31, (0.001% MB sensitizer) and ≥ 4.6 and ≥ 5.31 (0.0001% MB) respectively. Extending the LED irradiation time from 2 to 5 and 10 minutes did not change these results. In contrast approaches of BCoV-infected cells in the dark, treated with 0.001% and 0.0001% MB sensitizer alone, a lot of residual viruses could be detected after 10 minutes of incubation (RF 0.9 and RF 1.23 for 0.001% MB and 0.0001% MB respectively) In our SARS-CoV-2 experiments with VERO E6 infected cells the irradiation time was reduced to 1, 2 and 3 minutes for both concentrations with increasing broadband LED radiation intensity from 20 to 50 and 100.000 lx. (RF 4.67 for 0.001% and 0.0001% respectively). This showed a minimum concentration of 0.0001%MB and a minimum radiation intensity of 20,000 lx leads to a 99.99% reduction of intracellular and extracellular viruses after one minute exposure.
Collapse
Affiliation(s)
- J Arentz
- Initiator and coordinator of the study, Hamburg, Germany.
| | | |
Collapse
|
36
|
Skowron K, Bauza-Kaszewska J, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Zacharski M, Bernaciak Z, Gospodarek-Komkowska E. Nipah Virus-Another Threat From the World of Zoonotic Viruses. Front Microbiol 2022; 12:811157. [PMID: 35145498 PMCID: PMC8821941 DOI: 10.3389/fmicb.2021.811157] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Among the diseases that pose a serious threat to public health, those caused by viruses are of great importance. The Nipah virus (NiV) belonging to the Paramyxoviridae family was reported in Malaysia in 1998/1999. Due to its high mortality in humans, its zoonotic nature, the possibility of human-to-human transmission, and the lack of an available vaccine, the World Health Organization (WHO) has recognized it as a global health problem. Depending on strain specificity, neurological symptoms and severe respiratory disorders are observed in NiV infection. In most confirmed cases of NiV epidemics, the appearance of the virus in humans was associated with the presence of various animal species, but generally, bats of Pteropus species are considered the most important natural animal NiV reservoir and vector. Consumption of contaminated food, contact with animals, and “human-to-human” direct contact were identified as NiV transmission routes. Due to the lack of vaccines and drugs with proven effectiveness against NiV, treatment of patients is limited to supportive and prophylactic.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Jan and Jędrzej Śniadecki University of Technology in Bydgoszcz, Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Maciej Zacharski
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Zuzanna Bernaciak
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
37
|
Persaud AT, Burnie J, Thaya L, DSouza L, Martin S, Guzzo C. A UV-LED module that is highly effective at inactivating human coronaviruses and HIV-1. Virol J 2022; 19:29. [PMID: 35144624 PMCID: PMC8829982 DOI: 10.1186/s12985-022-01754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Ultraviolet (UV) light has previously been established as useful method of disinfection, with demonstrated efficacy to inactivate a broad range of microorganisms. The advent of ultraviolet light-emitting diodes provides advantages in ease of disinfection, in that there can be delivery of germicidal UV with the same light unit that delivers standard white light to illuminate a room. Herein we demonstrate the efficacy and feasibility of ultraviolet light-emitting diodes as a means of decontamination by inactivating two distinct virus models, human coronavirus 229E and human immunodeficiency virus. Importantly, the same dose of ultraviolet light that inactivated human viruses also elicited complete inactivation of ultraviolet-resistant bacterial spores (Bacillus pumilus), a gold standard for demonstrating ultraviolet-mediated disinfection. This work demonstrates that seconds of ultraviolet light-emitting diodes (UV-LED) exposure can inactivate viruses and bacteria, highlighting that UV-LED could be a useful and practical tool for broad sanitization of public spaces.
Collapse
Affiliation(s)
- Arvin T Persaud
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Room SW560, Toronto, ON, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Room SW560, Toronto, ON, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Laxshaginee Thaya
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Room SW560, Toronto, ON, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Liann DSouza
- Safe Antiviral Technologies Inc, 822 Manning Ave, Toronto, ON, M6G 2W8, Canada
| | - Steven Martin
- Safe Antiviral Technologies Inc, 822 Manning Ave, Toronto, ON, M6G 2W8, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Room SW560, Toronto, ON, M1C 1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
38
|
Enwemeka CS, Bumah VV, Castel JC, Suess SL. Pulsed blue light, saliva and curcumin significantly inactivate human coronavirus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 227:112378. [PMID: 35085988 PMCID: PMC8713422 DOI: 10.1016/j.jphotobiol.2021.112378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
In a recent study, we showed that pulsed blue light (PBL) inactivates as much as 52.3% of human beta coronavirus HCoV-OC43, a surrogate of SARS-CoV-2, and one of the major strains of viruses responsible for the annual epidemic of the common cold. Since curcumin and saliva are similarly antiviral and curcumin acts as blue light photosensitizer, we used Qubit fluorometry and WarmStart RT-LAMP assays to study the effect of combining 405 nm, 410 nm, 425 nm or 450 nm wavelengths of PBL with curcumin, saliva or a combination of curcumin and saliva against human beta coronavirus HCoV-OC43. The results showed that PBL, curcumin and saliva independently and collectively inactivate HCoV-OC43. Without saliva or curcumin supplementation 21.6 J/cm2 PBL reduced HCoV-OC43 RNA concentration a maximum of 32.8% (log10 = 2.13). Saliva supplementation alone inactivated the virus, reducing its RNA concentration by 61% (log10 = 2.23); with irradiation the reduction was as much as 79.1%. Curcumin supplementation alone decreased viral RNA 71.1%, and a maximum of 87.8% with irradiation. The combination of saliva and curcumin reduced viral RNA to 83.1% and decreased the RNA up to 90.2% with irradiation. The reduced levels could not be detected with qPCR. These findings show that PBL in the range of 405 nm to 450 nm wavelength is antiviral against human coronavirus HCoV-OC43, a surrogate of the COVID-19 virus. Further, it shows that with curcumin as a photosensitizer, it is possible to photodynamically inactivate the virus beyond qPCR detectable level using PBL. Since HCoV-OC43 is of the same beta coronavirus family as SARS-CoV-2, has the same genomic size, and is often used as its surrogate, these findings heighten the prospect of similarly inactivating novel coronavirus SARS-CoV-2, the virus responsible for COVID-19 pandemic.
Collapse
Affiliation(s)
- Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; James Hope University, Lagos, Nigeria; Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.
| | - Violet V Bumah
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA, USA
| | | | - Samantha L Suess
- Department of Biology, College of Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
39
|
Hossain F. Sources, enumerations and inactivation mechanisms of four emerging viruses in aqueous phase. JOURNAL OF WATER AND HEALTH 2022; 20:396-440. [PMID: 36366995 DOI: 10.2166/wh.2022.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Emergence and re-emergence of four types of severely infectious viruses have claimed significant numbers of lives when anthropogenic activities contribute to the mutagenesis of these pathogens and infectivity of these pathogens has been noticeably altered. However, both point and non-point sources can transport these viruses in water treatment and resource recovery facilities (RRF) where the presence of these pathogens in aerosolized form or in suspension can cause astronomical public health concerns. Hence, numerous scientific studies have been reviewed to comprehend the possible inactivation mechanisms of those viruses in aqueous phase where thermal-, photo-, and chemical-inactivation have confirmed their effectiveness in restraining those viruses and inactivation mechanisms are the major focuses to apprehend the quick and cost-effective virus removal process from water and RRF. Although practical applications of nano-sized disinfectants have challenged researchers, those disinfectants can completely kill the viruses and hamper RNA/DNA replication without any sign of reactivation or repair. Moreover, limitations and future research potential are discussed so that efficacious strategic management for a treatment facility can be developed at the forefront of fighting tactics against an epidemic or a pandemic. Enumerations, besides state-of-the-art detection techniques with gene sequences, are mentioned for these viruses.
Collapse
Affiliation(s)
- Fahim Hossain
- Department of Environmental Engineering, Imam Abdulrahman Bin Faisal University, Dammam, KSA E-mail:
| |
Collapse
|
40
|
Sarkar S, Kannan S, Khanna P, Singh AK. Role of platelet-to-lymphocyte count ratio (PLR), as a prognostic indicator in COVID-19: A systematic review and meta-analysis. J Med Virol 2022; 94:211-221. [PMID: 34436785 PMCID: PMC8661888 DOI: 10.1002/jmv.27297] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Prognostic predictors are of paramount interest for prompt intervention and optimal utilization of the healthcare system in the ongoing context of the COVID-19 pandemic. The platelet-to-lymphocyte count ratio (PLR), has emerged as a potential tool for risk stratification of critically ill patients with sepsis. The current systematic review explores the utility of PLR as a prognostic predictor of COVID-19 patients. We screened the electronic databases until May 15, 2021 after enrolling in PROSPERO (CRD42021220269). Studies evaluating the association between PLR on admission and outcomes in terms of mortality and severity among COVID-19 patients were included. We retrieved 32 studies, with a total of 2768 and 3262 COVID-19 patients for mortality and disease severity outcomes. Deceased and critically ill patients had higher PLR levels on admission in comparison to survivors and non-severe patients (mean differences [MD] = 66.10; 95% confidence interval [CI]: 47.75-84.44; p < 0.00001 and MD = 86.74; 95% CI: 67.7-105.7; p < 0.00001, respectively). A higher level of PLR on admission in COVID-19 patients is associated with increased morbidity and mortality. However, the evidence is of low quality and further studies regarding the cut-off value of PLR are the need of the hour.
Collapse
Affiliation(s)
- Soumya Sarkar
- Department of Anaesthesia, Pain Medicine & Critical CareAIIMSAnsari NagarNew DelhiIndia
| | - Sundara Kannan
- Department of Anaesthesia, Pain Medicine & Critical CareAIIMSAnsari NagarNew DelhiIndia
| | - Puneet Khanna
- Department of Anaesthesia, Pain Medicine & Critical CareAIIMSAnsari NagarNew DelhiIndia
| | - Akhil Kant Singh
- Department of Anaesthesia, Pain Medicine & Critical CareAIIMSAnsari NagarNew DelhiIndia
| |
Collapse
|
41
|
Ertekin B, Yortanlı M, Özelbaykal O, Doğru A, Girişgin AS, Acar T. The Relationship between Routine Blood Parameters and the Prognosis of COVID-19 Patients in the Emergency Department. Emerg Med Int 2021; 2021:7489675. [PMID: 34868686 PMCID: PMC8633851 DOI: 10.1155/2021/7489675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/10/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this study is to investigate the routine blood parameters of COVID-19 patients at the time of admission to the emergency department and their relationship with the severity of the disease and prognosis. A total of 500 patients, who were diagnosed with severe COVID-19 and hospitalized in the intensive care unit between 01.04.2020 and 01.02.2021 in the emergency department of a pandemic hospital, were retrospectively analyzed. Demographic, clinical, and laboratory data of the patients were obtained from the hospital registry system. Neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) were calculated using neutrophil, lymphocyte, monocyte, and platelet counts. These patients were divided into two groups: survivors and deceased. All parameters obtained from routine blood analysis were statistically compared between these two groups. While 280 out of 500 patients survived, 220 died. Of all patients, the mean age was 67 years and 51.8% were males. There was a significant difference between the two groups in terms of age, gender, length of hospital stay, need for mechanical ventilation, white blood cell, neutrophil, lymphocyte, monocyte, eosinophil, platelet counts, CRP, ferritin, procalcitonin values, NLR, MLR, and PLR (p < 0.001 for all). While NLR alone and MLR + NEU and NLR + PLR + MLR combinations had the highest AUC values (0.930, 0.947, and 0.939, respectively), MLR and PLR alone showed the lowest AUC values (0.875 and 0.797, respectively). The sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs) in the prediction of death according to the cutoff values of the parameters have been determined. A significant correlation was determined between age, NLR, MLR, and PLR and duration of hospital stay (p < 0.001 for all). Routine blood parameters and NLR, MLR, and PLR can assist emergency physicians to identify the severity and early prognosis of COVID-19 patients.
Collapse
Affiliation(s)
- Birsen Ertekin
- Department of Emergency, Beyhekim Training and Research Hospital, Konya, Turkey
| | - Mehmet Yortanlı
- Department of Emergency, Numune State Hospital, Konya, Turkey
| | - Ozan Özelbaykal
- Department of Emergency, Numune State Hospital, Konya, Turkey
| | - Ali Doğru
- Department of Emergency, Numune State Hospital, Konya, Turkey
| | - A. Sadık Girişgin
- Department of Emergency, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Tarık Acar
- Department of Emergency, Beyhekim Training and Research Hospital, Konya, Turkey
| |
Collapse
|
42
|
Liu H, Wang X. Pathogen reduction technology for blood component: A promising solution for prevention of emerging infectious disease and bacterial contamination in blood transfusion services. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
43
|
The role of UV and blue light in photo-eradication of microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
44
|
Viral Inactivation with Emphasis on SARS-CoV-2 Using Physical and Chemical Disinfectants. ScientificWorldJournal 2021; 2021:9342748. [PMID: 34712107 PMCID: PMC8548178 DOI: 10.1155/2021/9342748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022] Open
Abstract
Background Recently, an outbreak of a novel human coronavirus SARS-CoV-2 has become a world health concern leading to severe respiratory tract infections in humans. Virus transmission occurs through person-to-person contact, respiratory droplets, and contaminated hands or surfaces. Accordingly, we aim at reviewing the literature on all information available about the persistence of coronaviruses, including human and animal coronaviruses, on inanimate surfaces and inactivation strategies with biocides employed for chemical and physical disinfection. Method A comprehensive search was systematically conducted in main databases from 1998 to 2020 to identify various viral disinfectants associated with HCoV and methods for control and prevention of this newly emerged virus. Results The analysis of 62 studies shows that human coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV), canine coronavirus (CCV), transmissible gastroenteritis virus (TGEV), and mouse hepatitis virus (MHV) can be efficiently inactivated by physical and chemical disinfectants at different concentrations (70, 80, 85, and 95%) of 2-propanol (70 and 80%) in less than or equal to 60 s and 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Additionally, glutaraldehyde (0.5–2%), formaldehyde (0.7–1%), and povidone-iodine (0.1–0.75%) could readily inactivate coronaviruses. Moreover, dry heat at 56°C, ultraviolet light dose of 0.2 to 140 J/cm2, and gamma irradiation could effectively inactivate coronavirus. The WHO recommends the use of 0.1% sodium hypochlorite solution or an ethanol-based disinfectant with an ethanol concentration between 62% and 71%. Conclusion The results of the present study can help researchers, policymakers, health decision makers, and people perceive and take the correct measures to control and prevent further transmission of COVID-19. Prevention and decontamination will be the main ways to stop the ongoing outbreak of COVID-19.
Collapse
|
45
|
Bhardwaj SK, Singh H, Deep A, Khatri M, Bhaumik J, Kim KH, Bhardwaj N. UVC-based photoinactivation as an efficient tool to control the transmission of coronaviruses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148548. [PMID: 34465056 PMCID: PMC8238411 DOI: 10.1016/j.scitotenv.2021.148548] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 05/04/2023]
Abstract
The ongoing COVID-19 pandemic made us re-realize the importance of environmental disinfection and sanitation in indoor areas, hospitals, and clinical rooms. UVC irradiation of high energy and short wavelengths, especially in the 200-290-nm range possesses the great potential for germicidal disinfection. These properties of UVC allow to damage or destruct the nucleic acids (DNA/RNA) in diverse microbes (e.g., bacteria, fungi, and viruses). UVC light can hence be used as a promising tool for prevention and control of their infection or transmission. The present review offers insights into the historical perspective, mode of action, and recent advancements in the application of UVC-based antiviral therapy against coronaviruses (including SARS CoV-2). Moreover, the application of UVC lights in the sanitization of healthcare units, public places, medical instruments, respirators, and personal protective equipment (PPE) is also discussed. This article, therefore, is expected to deliver a new path for the developments of UVC-based viricidal approach.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Akash Deep
- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
46
|
Minamikawa T, Koma T, Suzuki A, Nagamatsu K, Yasui T, Yasutomo K, Nomaguchi M. Inactivation of SARS-CoV-2 by deep ultraviolet light emitting diode: A review. JAPANESE JOURNAL OF APPLIED PHYSICS 2021; 60:090501. [DOI: 10.35848/1347-4065/ac19d1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Saba B, Hasan SW, Kjellerup BV, Christy AD. Capacity of existing wastewater treatment plants to treat SARS-CoV-2. A review. BIORESOURCE TECHNOLOGY REPORTS 2021; 15:100737. [PMID: 34179735 PMCID: PMC8216935 DOI: 10.1016/j.biteb.2021.100737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022]
Abstract
Water is one of many viral transmission routes, and the presence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) in wastewater has brought attention to its treatment. SARS CoV-2 primarily transmits in the air but the persistence of the virus in the water possibly can serve as a secondary source even though current studies do not show this. In this paper, an evaluation of the current literature with regards to the treatment of SARS-CoV-2 in wastewater treatment plant (WWTP) effluents and biosolids is presented. Treatment efficiencies of WWTPs are compared for viral load reduction on the basis of publicly available data. The results of this evaluation indicate that existing WWTPs are effectively removing 1-6 log10 viable SARS-CoV-2. However, sludge and biosolids provide an umbrella of protection from treatment and inactivation to the virus. Hence, sludge treatment factors like high temperature, pH changes, and predatory microorganisms can effectively inactivate SARS-CoV-2.
Collapse
Affiliation(s)
- Beenish Saba
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
- Department of Environmental Sciences, PMAS Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| | - Ann D Christy
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
| |
Collapse
|
48
|
Masjoudi M, Mohseni M, Bolton JR. Sensitivity of Bacteria, Protozoa, Viruses, and Other Microorganisms to Ultraviolet Radiation. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2021; 126:126021. [PMID: 39081635 PMCID: PMC11259122 DOI: 10.6028/jres.126.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 08/02/2024]
Abstract
Data concerning the sensitivity of various organisms to ultraviolet (UV) radiation exposure are very important in the design of UV disinfection equipment. This review analyzes fluence data from almost 250 studies and organizes the data into a set of recommended fluence values for specific log reductions and an appendix containing all the collected data. This article was sponsored by Dianne L. Poster, Material Measurement Laboratory, and C. Cameron Miller, Physical Measurement Laboratory, National Institute of Standards and Technology (NIST). It is published in collaboration with the International Ultraviolet Association as a complement to the NIST Workshop on Ultraviolet Disinfection Technologies, 14-15 January 2020, Gaithersburg, MD. The views expressed represent those of the authors and not necessarily those of NIST.
Collapse
Affiliation(s)
- Mahsa Masjoudi
- Department of Chemical & Biological
Engineering University of British Columbia Vancouver, BC, V6T 1Z3
Canada
| | - Madjid Mohseni
- Department of Chemical & Biological
Engineering University of British Columbia Vancouver, BC, V6T 1Z3
Canada
| | - James R. Bolton
- Department of Civil and Environmental
Engineering University of Alberta Edmonton, AB, T6G 2R3
Canada
| |
Collapse
|
49
|
Glaab J, Lobo-Ploch N, Cho HK, Filler T, Gundlach H, Guttmann M, Hagedorn S, Lohan SB, Mehnke F, Schleusener J, Sicher C, Sulmoni L, Wernicke T, Wittenbecher L, Woggon U, Zwicker P, Kramer A, Meinke MC, Kneissl M, Weyers M, Winterwerber U, Einfeldt S. Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs. Sci Rep 2021; 11:14647. [PMID: 34282225 PMCID: PMC8290050 DOI: 10.1038/s41598-021-94070-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Multiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm2. MRSA bacteria in different concentrations on blood agar plates were inactivated with irradiation doses in the range of 15-40 mJ/cm2. Porcine skin irradiated with a dose of 40 mJ/cm2 at 233 nm showed only 3.7% CPD and 2.3% 6-4PP DNA damage. Corresponding irradiation at 254 nm caused 15-30 times higher damage. Thus, the skin damage caused by the disinfectant doses is so small that it can be expected to be compensated by the skin's natural repair mechanisms. LED-based far-UVC lamps could therefore soon be used in everyday clinical practice to eradicate multiresistant pathogens directly on humans.
Collapse
Affiliation(s)
- Johannes Glaab
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Neysha Lobo-Ploch
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Hyun Kyong Cho
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Thomas Filler
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Heiko Gundlach
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Martin Guttmann
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Sylvia Hagedorn
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Silke B Lohan
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank Mehnke
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
- Georgia Institute of Technology, Atlanta, GA, USA
| | - Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Claudia Sicher
- Institut für Hygiene und Umweltmedizin, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Luca Sulmoni
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Tim Wernicke
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Lucas Wittenbecher
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Ulrike Woggon
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Paula Zwicker
- Institut für Hygiene und Umweltmedizin, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Axel Kramer
- Institut für Hygiene und Umweltmedizin, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Kneissl
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Markus Weyers
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Ulrike Winterwerber
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Sven Einfeldt
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany.
| |
Collapse
|
50
|
Mariewskaya KA, Tyurin AP, Chistov AA, Korshun VA, Alferova VA, Ustinov AV. Photosensitizing Antivirals. Molecules 2021; 26:3971. [PMID: 34209713 PMCID: PMC8271894 DOI: 10.3390/molecules26133971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022] Open
Abstract
Antiviral action of various photosensitizers is already summarized in several comprehensive reviews, and various mechanisms have been proposed for it. However, a critical consideration of the matter of the area is complicated, since the exact mechanisms are very difficult to explore and clarify, and most publications are of an empirical and "phenomenological" nature, reporting a dependence of the antiviral action on illumination, or a correlation of activity with the photophysical properties of the substances. Of particular interest is substance-assisted photogeneration of highly reactive singlet oxygen (1O2). The damaging action of 1O2 on the lipids of the viral envelope can probably lead to a loss of the ability of the lipid bilayer of enveloped viruses to fuse with the lipid membrane of the host cell. Thus, lipid bilayer-affine 1O2 photosensitizers have prospects as broad-spectrum antivirals against enveloped viruses. In this short review, we want to point out the main types of antiviral photosensitizers with potential affinity to the lipid bilayer and summarize the data on new compounds over the past three years. Further understanding of the data in the field will spur a targeted search for substances with antiviral activity against enveloped viruses among photosensitizers able to bind to the lipid membranes.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
- Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
| |
Collapse
|