1
|
Nyquist ML, Fink LA, Mauldin GE, Coffman CR. Evaluation of a Novel Veterinary Dental Radiography Artificial Intelligence Software Program. J Vet Dent 2025; 42:118-127. [PMID: 38321886 DOI: 10.1177/08987564231221071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
There is a growing trend of artificial intelligence (AI) applications in veterinary medicine, with the potential to assist veterinarians in clinical decisions. A commercially available, AI-based software program (AISP) for detecting common radiographic dental pathologies in dogs and cats was assessed for agreement with two human evaluators. Furcation bone loss, periapical lucency, resorptive lesion, retained tooth root, attachment (alveolar bone) loss and tooth fracture were assessed. The AISP does not attempt to diagnose or provide treatment recommendations, nor has it been trained to identify other types of radiographic pathology. Inter-rater reliability for detecting pathologies was measured by absolute percent agreement and Gwet's agreement coefficient. There was good to excellent inter-rater reliability among all raters, suggesting the AISP performs similarly at detecting the specified pathologies compared to human evaluators. Sensitivity and specificity for the AISP were assessed using human evaluators as the reference standard. The results revealed a trend of low sensitivity and high specificity, suggesting the AISP may produce a high rate of false negatives and may not be a good tool for initial screening. However, the low rate of false positives produced by the AISP suggests it may be beneficial as a "second set of eyes" because if it detects the specific pathology, there is a high likelihood that the pathology is present. With an understanding of the AISP, as an aid and not a substitute for veterinarians, the technology may increase dental radiography utilization and diagnostic potential.
Collapse
Affiliation(s)
| | - Lisa A Fink
- Arizona Veterinary Dental Specialists, Scottsdale, AZ, USA
| | | | - Curt R Coffman
- Arizona Veterinary Dental Specialists, Scottsdale, AZ, USA
| |
Collapse
|
2
|
Suksangvoravong H, Choisunirachon N, Tongloy T, Chuwongin S, Boonsang S, Kittichai V, Thanaboonnipat C. Automatic classification and grading of canine tracheal collapse on thoracic radiographs by using deep learning. Vet Radiol Ultrasound 2024; 65:679-688. [PMID: 39012062 DOI: 10.1111/vru.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
Tracheal collapse is a chronic and progressively worsening disease; the severity of clinical symptoms experienced by affected individuals depends on the degree of airway collapse. Cutting-edge automated tools are necessary to modernize disease screening using radiographs across various veterinary settings, such as animal clinics and hospitals. This is primarily due to the inherent challenges associated with interpreting uncertainties among veterinarians. In this study, an artificial intelligence model was developed to screen canine tracheal collapse using archived lateral cervicothoracic radiographs. This model can differentiate between a normal and collapsed trachea, ranging from early to severe degrees. The you-only-look-once (YOLO) models, including YOLO v3, YOLO v4, and YOLO v4 tiny, were used to train and test data sets under the in-house XXX platform. The results showed that the YOLO v4 tiny-416 model had satisfactory performance in screening among the normal trachea, grade 1-2 tracheal collapse, and grade 3-4 tracheal collapse with 98.30% sensitivity, 99.20% specificity, and 98.90% accuracy. The area under the curve of the precision-recall curve was >0.8, which demonstrated high diagnostic accuracy. The intraobserver agreement between deep learning and radiologists was κ = 0.975 (P < .001), with all observers having excellent agreement (κ = 1.00, P < .001). The intraclass correlation coefficient between observers was >0.90, which represented excellent consistency. Therefore, the deep learning model can be a useful and reliable method for effective screening and classification of the degree of tracheal collapse based on routine lateral cervicothoracic radiographs.
Collapse
Affiliation(s)
- Hathaiphat Suksangvoravong
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nan Choisunirachon
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerawat Tongloy
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Santhad Chuwongin
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Siridech Boonsang
- Department of Electrical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Veerayuth Kittichai
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Chutimon Thanaboonnipat
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Burti S, Banzato T, Coghlan S, Wodzinski M, Bendazzoli M, Zotti A. Artificial intelligence in veterinary diagnostic imaging: Perspectives and limitations. Res Vet Sci 2024; 175:105317. [PMID: 38843690 DOI: 10.1016/j.rvsc.2024.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/17/2024]
Abstract
The field of veterinary diagnostic imaging is undergoing significant transformation with the integration of artificial intelligence (AI) tools. This manuscript provides an overview of the current state and future prospects of AI in veterinary diagnostic imaging. The manuscript delves into various applications of AI across different imaging modalities, such as radiology, ultrasound, computed tomography, and magnetic resonance imaging. Examples of AI applications in each modality are provided, ranging from orthopaedics to internal medicine, cardiology, and more. Notable studies are discussed, demonstrating AI's potential for improved accuracy in detecting and classifying various abnormalities. The ethical considerations of using AI in veterinary diagnostics are also explored, highlighting the need for transparent AI development, accurate training data, awareness of the limitations of AI models, and the importance of maintaining human expertise in the decision-making process. The manuscript underscores the significance of AI as a decision support tool rather than a replacement for human judgement. In conclusion, this comprehensive manuscript offers an assessment of the current landscape and future potential of AI in veterinary diagnostic imaging. It provides insights into the benefits and challenges of integrating AI into clinical practice while emphasizing the critical role of ethics and human expertise in ensuring the wellbeing of veterinary patients.
Collapse
Affiliation(s)
- Silvia Burti
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy.
| | - Tommaso Banzato
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Simon Coghlan
- School of Computing and Information Systems, Centre for AI and Digital Ethics, Australian Research Council Centre of Excellence for Automated Decision-Making and Society, University of Melbourne, 3052 Melbourne, Australia
| | - Marek Wodzinski
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, 30059 Kraków, Poland; Information Systems Institute, University of Applied Sciences - Western Switzerland (HES-SO Valais), 3960 Sierre, Switzerland
| | - Margherita Bendazzoli
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Alessandro Zotti
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| |
Collapse
|
4
|
Chu CP. ChatGPT in veterinary medicine: a practical guidance of generative artificial intelligence in clinics, education, and research. Front Vet Sci 2024; 11:1395934. [PMID: 38911678 PMCID: PMC11192069 DOI: 10.3389/fvets.2024.1395934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
ChatGPT, the most accessible generative artificial intelligence (AI) tool, offers considerable potential for veterinary medicine, yet a dedicated review of its specific applications is lacking. This review concisely synthesizes the latest research and practical applications of ChatGPT within the clinical, educational, and research domains of veterinary medicine. It intends to provide specific guidance and actionable examples of how generative AI can be directly utilized by veterinary professionals without a programming background. For practitioners, ChatGPT can extract patient data, generate progress notes, and potentially assist in diagnosing complex cases. Veterinary educators can create custom GPTs for student support, while students can utilize ChatGPT for exam preparation. ChatGPT can aid in academic writing tasks in research, but veterinary publishers have set specific requirements for authors to follow. Despite its transformative potential, careful use is essential to avoid pitfalls like hallucination. This review addresses ethical considerations, provides learning resources, and offers tangible examples to guide responsible implementation. A table of key takeaways was provided to summarize this review. By highlighting potential benefits and limitations, this review equips veterinarians, educators, and researchers to harness the power of ChatGPT effectively.
Collapse
Affiliation(s)
- Candice P. Chu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Celniak W, Wodziński M, Jurgas A, Burti S, Zotti A, Atzori M, Müller H, Banzato T. Improving the classification of veterinary thoracic radiographs through inter-species and inter-pathology self-supervised pre-training of deep learning models. Sci Rep 2023; 13:19518. [PMID: 37945653 PMCID: PMC10636209 DOI: 10.1038/s41598-023-46345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The analysis of veterinary radiographic imaging data is an essential step in the diagnosis of many thoracic lesions. Given the limited time that physicians can devote to a single patient, it would be valuable to implement an automated system to help clinicians make faster but still accurate diagnoses. Currently, most of such systems are based on supervised deep learning approaches. However, the problem with these solutions is that they need a large database of labeled data. Access to such data is often limited, as it requires a great investment of both time and money. Therefore, in this work we present a solution that allows higher classification scores to be obtained using knowledge transfer from inter-species and inter-pathology self-supervised learning methods. Before training the network for classification, pretraining of the model was performed using self-supervised learning approaches on publicly available unlabeled radiographic data of human and dog images, which allowed substantially increasing the number of images for this phase. The self-supervised learning approaches included the Beta Variational Autoencoder, the Soft-Introspective Variational Autoencoder, and a Simple Framework for Contrastive Learning of Visual Representations. After the initial pretraining, fine-tuning was performed for the collected veterinary dataset using 20% of the available data. Next, a latent space exploration was performed for each model after which the encoding part of the model was fine-tuned again, this time in a supervised manner for classification. Simple Framework for Contrastive Learning of Visual Representations proved to be the most beneficial pretraining method. Therefore, it was for this method that experiments with various fine-tuning methods were carried out. We achieved a mean ROC AUC score of 0.77 and 0.66, respectively, for the laterolateral and dorsoventral projection datasets. The results show significant improvement compared to using the model without any pretraining approach.
Collapse
Affiliation(s)
- Weronika Celniak
- University of Applied Sciences Western Switzerland (HES-SO), 3960, Sierre, Switzerland.
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, 30059, Kraków, Poland.
| | - Marek Wodziński
- University of Applied Sciences Western Switzerland (HES-SO), 3960, Sierre, Switzerland
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, 30059, Kraków, Poland
| | - Artur Jurgas
- University of Applied Sciences Western Switzerland (HES-SO), 3960, Sierre, Switzerland
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, 30059, Kraków, Poland
| | - Silvia Burti
- Department of Animal Medicine, Productions, and Health, Legnaro (PD), University of Padua, 35020, Padua, Italy
| | - Alessandro Zotti
- Department of Animal Medicine, Productions, and Health, Legnaro (PD), University of Padua, 35020, Padua, Italy
| | - Manfredo Atzori
- University of Applied Sciences Western Switzerland (HES-SO), 3960, Sierre, Switzerland
- Department of Neuroscience, University of Padua, 35121, Padua, IT, Italy
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129, Padova, Italy
| | - Henning Müller
- University of Applied Sciences Western Switzerland (HES-SO), 3960, Sierre, Switzerland
- Medical Faculty, University of Geneva, 1206, Geneva, Switzerland
- The Sense Research and Innovation Insitute, 1950, Sion, Switzerland
| | - Tommaso Banzato
- Department of Animal Medicine, Productions, and Health, Legnaro (PD), University of Padua, 35020, Padua, Italy
| |
Collapse
|
6
|
Banzato T, Wodzinski M, Burti S, Vettore E, Muller H, Zotti A. An AI-based algorithm for the automatic evaluation of image quality in canine thoracic radiographs. Sci Rep 2023; 13:17024. [PMID: 37813976 PMCID: PMC10562412 DOI: 10.1038/s41598-023-44089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
The aim of this study was to develop and test an artificial intelligence (AI)-based algorithm for detecting common technical errors in canine thoracic radiography. The algorithm was trained using a database of thoracic radiographs from three veterinary clinics in Italy, which were evaluated for image quality by three experienced veterinary diagnostic imagers. The algorithm was designed to classify the images as correct or having one or more of the following errors: rotation, underexposure, overexposure, incorrect limb positioning, incorrect neck positioning, blurriness, cut-off, or the presence of foreign objects, or medical devices. The algorithm was able to correctly identify errors in thoracic radiographs with an overall accuracy of 81.5% in latero-lateral and 75.7% in sagittal images. The most accurately identified errors were limb mispositioning and underexposure both in latero-lateral and sagittal images. The accuracy of the developed model in the classification of technically correct radiographs was fair in latero-lateral and good in sagittal images. The authors conclude that their AI-based algorithm is a promising tool for improving the accuracy of radiographic interpretation by identifying technical errors in canine thoracic radiographs.
Collapse
Affiliation(s)
- Tommaso Banzato
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy.
| | - Marek Wodzinski
- Department of Measurement and Electronics, AGH University of Krakow, PL32059, Krakow, Poland
- Information Systems Institute, University of Applied Sciences - Western Switzerland (HES-SO Valais), 3960, Sierre, Switzerland
| | - Silvia Burti
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Eleonora Vettore
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Henning Muller
- Information Systems Institute, University of Applied Sciences - Western Switzerland (HES-SO Valais), 3960, Sierre, Switzerland
| | - Alessandro Zotti
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| |
Collapse
|
7
|
Pomerantz LK, Solano M, Kalosa-Kenyon E. Performance of a commercially available artificial intelligence software for the detection of confirmed pulmonary nodules and masses in canine thoracic radiography. Vet Radiol Ultrasound 2023; 64:881-889. [PMID: 37549965 DOI: 10.1111/vru.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/09/2023] Open
Abstract
Advancements in the field of artificial intelligence (AI) are modest in veterinary medicine relative to their substantial growth in human medicine. However, interest in this field is increasing, and commercially available veterinary AI products are already on the market. In this retrospective, diagnostic accuracy study, the accuracy of a commercially available convolutional neural network AI product (Vetology AI®) is assessed on 56 thoracic radiographic studies of pulmonary nodules and masses, as well as 32 control cases. Positive cases were confirmed to have pulmonary pathology consistent with a nodule/mass either by CT, cytology, or histopathology. The AI software detected pulmonary nodules/masses in 31 of 56 confirmed cases and correctly classified 30 of 32 control cases. The AI model accuracy is 69.3%, balanced accuracy 74.6%, F1-score 0.7, sensitivity 55.4%, and specificity 93.75%. Building on these results, both the current clinical relevance of AI and how veterinarians can be expected to use available commercial products are discussed.
Collapse
Affiliation(s)
- Leah Kathleen Pomerantz
- Department of Clinical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Mauricio Solano
- Department of Clinical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Eric Kalosa-Kenyon
- Department of Clinical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| |
Collapse
|
8
|
Pereira AI, Franco-Gonçalo P, Leite P, Ribeiro A, Alves-Pimenta MS, Colaço B, Loureiro C, Gonçalves L, Filipe V, Ginja M. Artificial Intelligence in Veterinary Imaging: An Overview. Vet Sci 2023; 10:vetsci10050320. [PMID: 37235403 DOI: 10.3390/vetsci10050320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Artificial intelligence and machine learning have been increasingly used in the medical imaging field in the past few years. The evaluation of medical images is very subjective and complex, and therefore the application of artificial intelligence and deep learning methods to automatize the analysis process would be very beneficial. A lot of researchers have been applying these methods to image analysis diagnosis, developing software capable of assisting veterinary doctors or radiologists in their daily practice. This article details the main methodologies used to develop software applications on machine learning and how veterinarians with an interest in this field can benefit from such methodologies. The main goal of this study is to offer veterinary professionals a simple guide to enable them to understand the basics of artificial intelligence and machine learning and the concepts such as deep learning, convolutional neural networks, transfer learning, and the performance evaluation method. The language is adapted for medical technicians, and the work already published in this field is reviewed for application in the imaging diagnosis of different animal body systems: musculoskeletal, thoracic, nervous, and abdominal.
Collapse
Affiliation(s)
- Ana Inês Pereira
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Pedro Franco-Gonçalo
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Pedro Leite
- Neadvance Machine Vision SA, 4705-002 Braga, Portugal
| | | | - Maria Sofia Alves-Pimenta
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Department of Animal Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Bruno Colaço
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Department of Animal Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Cátia Loureiro
- School of Science and Technology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Engineering, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Lio Gonçalves
- School of Science and Technology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Engineering, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Systems and Computer Engineering (INESC-TEC), Technology and Science, 4200-465 Porto, Portugal
| | - Vítor Filipe
- School of Science and Technology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Engineering, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Systems and Computer Engineering (INESC-TEC), Technology and Science, 4200-465 Porto, Portugal
| | - Mário Ginja
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|