1
|
Hajihosseintehrani M, Amini A, Heidari M, Gholipourmalekabadi M, Fadaei Fathabady F, Mostafavinia A, Ahmadi H, Khodadadi M, Naser R, Zare F, Alizadeh S, Moeinian N, Chien S, Bayat M. The Application of Photobiomodulation and Stem Cells Seeded on the Scaffold Accelerates the Wound Healing Process in Mice. J Lasers Med Sci 2024; 15:e40. [PMID: 39381785 PMCID: PMC11459249 DOI: 10.34172/jlms.2024.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 10/10/2024]
Abstract
Introduction: The purpose of this research was to test the impact of seeding a hydrogel chitosan scaffold (HCS) with human adipose-derived stem cells (hADSCs) under the influence of photobiomodulation (PBM) on the remodeling step on the wound repairing process in mice. Methods: Thirty mice were randomly assigned to five groups (n=6 per group ): The control group (group 1) consisted of mice without any intervention. In group 2, an HCS was implanted into the wound. In group 3, a combination of HCS+hADSC was inserted into the wound. In group 4, an HCS was inserted into the wound and PBM was applied. In group 5, a combination of HCS+hADSCs was inserted into the wound, followed by PBM treatment. Results: Improvements in the injury closing rate (WCR) and microbial flora were observed in all groups. However, the highest WCRs were observed in group s 5, 4, 3, and 2 (all P values were 0.000). Groups 3-5 showed increased wound strength compared to group s 1 and 2, with group 2 demonstrating better results than group 1 (P values ranged from 0.000 to 0.013). Although group s 3-5 showed increases in certain stereological elements compared to group s 1 and 2, group 2 exhibited superior results in comparison with group 1 (P values ranged from 0.000 to 0.049). Conclusion: The joined use of HCS+hADSCs+PBM significantly accelerated the wound healing process during the maturation phase in healthy mice. This approach demonstrated superior wound healing compared to the use of HCS alone, hADSCs+HCS, or PBM+HCS. The findings suggest an additive effect when HCS+hADSCs+PBM are combined.
Collapse
Affiliation(s)
- Masoumeh Hajihosseintehrani
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammadhossein Heidari
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Maryam Khodadadi
- Xi’an jiaotong University School of Stomatology, Xi’an, Shaanxi Province, China
| | - Reza Naser
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sanaz Alizadeh
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Moeinian
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| | - Mohammad Bayat
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| |
Collapse
|
2
|
Nikzad S, Same S, Safiri S, Dolati S, Roushangar Zineh B, Meshgi S, Roshangar L, Şahin F. The effect of Wharton's jelly-derived stem cells seeded/boron-loaded acellular scaffolds on the healing of full-thickness burn wounds in the rat model. Biomed Mater 2024; 19:025042. [PMID: 38364284 DOI: 10.1088/1748-605x/ad2a3e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Burn wounds are the most destructive and complicated type of skin or underlying soft tissue injury that are exacerbated by a prolonged inflammatory response. Several cell-based therapeutic systems through the culturing of potent stem cells on modified scaffolds have been developed to direct the burn healing challenges. In this context, a new regenerative platform based on boron (B) enriched-acellular sheep small intestine submucosa (AOSIS) scaffold was designed and used as a carrier for mesenchymal stem cells derived from Wharton's jelly (WJMSCs) aiming to promote the tissue healing in burn-induced rat models. hWJMSCs have been extracted from human extra-embryonic umbilical cord tissue. Thereafter, 96 third-degree burned Wistar male rats were divided into 4 groups. The animals that did not receive any treatment were considered as group A (control). Then, group B was treated just by AOSIS scaffold, group C was received cell-seeded AOSIS scaffold (hWJMSCs-AOSIS), and group D was covered by boron enriched-cell-AOSIS scaffold (B/hWJMSCs-AOSIS). Inflammatory factors, histopathological parameters, and the expression levels of epitheliogenic and angiogenic proteins were assessed on 5, 14 and 21 d post-wounding. Application of the B/hWJMSCs-AOSIS on full-thickness skin-burned wounds significantly reduced the volume of neutrophils and lymphocytes at day 21 post-burning, whilst the number of fibroblasts and blood vessels enhanced at this time. In addition, molecular and histological analysis of wounds over time further verified that the addition of boron promoted wound healing, with decreased inflammatory factors, stimulated vascularization, accelerated re-epithelialization, and enhanced expression levels of epitheliogenic genes. In addition, the boron incorporation amplified wound closure via increasing collagen deposition and fibroblast volume and activity. Therefore, this newly fabricated hWJMSCs/B-loaded scaffold can be used as a promising system to accelerate burn wound reconstruction through inflammatory regulation and angiogenesis stimulation.
Collapse
Affiliation(s)
- Sadeneh Nikzad
- Biology Department, Concordia University, Montreal, Canada
| | - Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Meshgi
- General Cardiologist, Tabriz Madani Heart Hospital, Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Faculty of Medicine, Department of Anatomical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fikrettin Şahin
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
3
|
Singh H, Hassan S, Nabi SU, Mishra NC, Dhanka M, Purohit SD, Ganai NA, Bhaskar R, Han SS, Qurashi AUH, Bashir SM. Multicomponent decellularized extracellular matrix of caprine small intestine submucosa based bioactive hydrogel promoting full-thickness burn wound healing in rabbits. Int J Biol Macromol 2024; 255:127810. [PMID: 37952796 DOI: 10.1016/j.ijbiomac.2023.127810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Effective treatment for full-thickness burn wounds has remained challenging for clinicians. Among various strategies, extracellular gel-based dressing materials have gained attention to promote effective and rapid wound healing. These gel-based materials are porous and have antioxidant, antibacterial, hydrophilic, biodegradation, and biocompatible properties and hence can be used to alleviate burn wound healing. In concurrence with these findings, the present study evaluates thermo-responsive and self-assembled decellularized extracellular matrix (ECM) of caprine small intestine submucosa (DG-SIS) gel-based dressing material for burn wound healing. To expedite healing and efficiently tackle excessive free radicals and bioburden at the burn wound site, DG-SIS gel is fortified with antibacterial components (zinc oxide nanoparticles; ZnO) and a potent antioxidant agent (Vitamin-C;Vt-C). ZnO- and Vt-C-enriched DG-SIS (DG-SIS/ZnO/Vt-C) gels significantly increased the antioxidant and antibacterial activity of the therapeutic hydrogel. Additionally, the fabricated DG-SIS/ZnO/Vt-C bioactive gel resulted in significant full-thickness burn wound contraction (97.75 % in 14 days), a lower inflammatory effect, and enhanced angiogenesis with the highest collagen synthesis (1.22 μg/mg in 14 days) at the wound site. The outcomes from this study demonstrate a synergistic effect of ZnO/Vt-C in the bioactive gel as an effective and inexpensive therapeutic approach for full-thickness burn wound treatment.
Collapse
Affiliation(s)
- Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India; Department of Biology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates
| | - Shabir Hassan
- Department of Biology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
| | - Showket Ul Nabi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Sciences & Animal Husbandary Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| | - Mukesh Dhanka
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Shiv Dutt Purohit
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Nazir Ahmad Ganai
- Molecular Genetics Laboratory, Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Ahsan Ul Haq Qurashi
- Advanced Materials Chemistry Center, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates; Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates
| | - Showkeen Muzamil Bashir
- Biochemistry and Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Gierek M, Łabuś W, Słaboń A, Ziółkowska K, Ochała-Gierek G, Kitala D, Szyluk K, Niemiec P. Co-Graft of Acellular Dermal Matrix and Split Thickness Skin Graft-A New Reconstructive Surgical Method in the Treatment of Hidradenitis Suppurativa. Bioengineering (Basel) 2022; 9:389. [PMID: 36004913 PMCID: PMC9404734 DOI: 10.3390/bioengineering9080389] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Hidradenitis suppurativa is a chronic disease that significantly reduces patients' quality of life. Patients are chronically treated with systemic therapies, which are often ineffective. Surgical treatment for severe cases of hidradenitis suppurativa is one option for affected patients. Surgical treatment has its limitations, and wound closure may be particularly problematic. This requires the use of reconstructive techniques. The methods of choice for wound closure are split-thickness skin grafts or local flaps reconstructions. However, each method has its limitations. This is a presentation of a new reconstructive surgical method in hidradenitis suppurativa surgery: the use of a co-graft of Acellular dermal matrix and split thickness skin graft as a novel method in wound closure after wide excisions, based on two cases. The results of this method are very promising: we achieved very fast wound closure with good aesthetic results regarding scar formation. In this paper, we used several examinations: laser speckle analysis, cutometer tests, and health-related quality of life (QoL) questionnaire to check the clinical impact of this method. Our initial results are very encouraging. ADM with STSG as a co-graft could be widely used in reconstructive surgery. This is a preliminary study, which should be continued in further, extended research.
Collapse
Affiliation(s)
- Marcin Gierek
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Wojciech Łabuś
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Anna Słaboń
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Karolina Ziółkowska
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Gabriela Ochała-Gierek
- Dermatology Department, City Hospital in Sosnowiec, ul. Zegadłowicza 3, 41-200 Sosnowiec, Poland
| | - Diana Kitala
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Karol Szyluk
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- I Department of Orthopaedic and Trauma Surgery, Ortophaedics Department, District Hospital of Orthopaedics and Trauma Surgery, 41-940 Piekary Śląskie, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| |
Collapse
|
5
|
Abstract
Thermal injuries may cause significant damage to large areas of the skin. Extensive and deep burn wounds require specialized therapy. The optimal method in the strategy of treating extensive, full thickness burns (III°) is the use of autologous split thickness skin grafts STSG (Busuioc et al. Rom J Morphol Embryol 4:1061-1067, 2012; Kitala D, Kawecki M, Klama-Baryła A, Łabuś W, Kraut M, Glik J, Ryszkiel I, Kawecki MP, Nowak M. Allogeneic vs. Autologous Skin Grafts in the Therapy of Patients with Burn Injuries: A Restrospective, Open-label Clinical Study with Pair Matching. Adv Clin Exp Med. 2016 Sep-Oct;25(5):923-929.; Glik J, Kawecki M, Kitala D, Klama-Baryła A, Łabuś W, Grabowski M, Durdzińska A, Nowak M, Misiuga M, Kasperczyk A. A new option for definitive burn wound closure - pair matching type of retrospective case-control study of hand burns in the hospitalized patients group in the Dr Stanislaw Sakiel Center for Burn Treatment between 2009 and 2015. Int Wound J. 2017 Feb 21. https://doi.org/10.1111/iwj.12720 . [Epub ahead of print]; Prim et al. May 24Wound Repair Regen., 2017; Grossova et al. Mar 31Ann Burns Fire Disasters 30:5-8, 2017). The main limitation of that method is the inadequate amount of healthy, undamaged skin (donor sites), which could be harvested and used as a graft. Moreover, donor sites are an additional wounds that require analgesic therapy, leave scars during the healing process and they are highly susceptible to infection (1-6). It must be emphasized that in terms of the treatment of severe, deep and extensive burns, and there should be no doubt that the search for a biocompatible skin substitute that would be able to replace autologous STSG is an absolute priority. The above-mentioned necessitates the search for new treatment methods of severe burn wounds. Such methods could consider the preparation and application of bioengineered, natural skin substitutes. At present, as the clinical standard considered by the physicians may be use of available biological skin substitutes, e.g., human allogeneic skin, in vitro cultured skin cells, acellular dermal matrix ADM and revitalized ADMs, etc. (Busuioc et al. Rom J Morphol Embryol 4:1061-1067, 2012; Kitala D, Kawecki M, Klama-Baryła A, Łabuś W, Kraut M, Glik J, Ryszkiel I, Kawecki MP, Nowak M. Allogeneic vs. Autologous Skin Grafts in the Therapy of Patients with Burn Injuries: A Restrospective, Open-label Clinical Study with Pair Matching. Adv Clin Exp Med. 2016 Sep-Oct;25(5):923-929.; Glik J, Kawecki M, Kitala D, Klama-Baryła A, Łabuś W, Grabowski M, Durdzińska A, Nowak M, Misiuga M, Kasperczyk A. A new option for definitive burn wound closure - pair matching type of retrospective case-control study of hand burns in the hospitalised patients group in the Dr Stanislaw Sakiel Center for Burn Treatment between 2009 and 2015. Int Wound J. 2017 Feb 21. https://doi.org/10.1111/iwj.12720 . [Epub ahead of print]; Prim et al. May 24Wound Repair Regen., 2017; Grossova et al. Mar 31Ann Burns Fire Disasters 30:5-8, 2017; Łabuś et al. FebJ Biomed Mater Res B Appl Biomater 106:726-733, 2018).
Collapse
|
6
|
Li D, Sun WQ, Wang T, Gao Y, Wu J, Xie Z, Zhao J, He C, Zhu M, Zhang S, Wang P, Mo X. Evaluation of a novel tilapia-skin acellular dermis matrix rationally processed for enhanced wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112202. [PMID: 34225854 DOI: 10.1016/j.msec.2021.112202] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/21/2021] [Accepted: 05/16/2021] [Indexed: 12/14/2022]
Abstract
Acellular Dermal Matrix (ADM) is mainly made with human or porcine skins and has the risk of zoonotic virus transmission. The fish skin-derived ADM could overcome the shortcoming. Fish skin acellular matrix has been used as wound dressing, but there is few systematic studies on tilapia-skin acellular dermal matrix (TS-ADM). In the present study, a novel TS-ADM was made by an alkaline decellularization process and γ-irradiation. The physical properties, biocompatibility, pre-clinical safety and wound healing activity of TS-ADM were systematically evaluated for its value as a functionally bioactive wound dressing. Histopathological analysis (hematoxylin and eosin staining, 4,6-diamidino-2-phenylindole (DAPI) staining) and DNA quantification both proved that the nuclear components of tilapia skin were removed sufficiently in TS-ADM. Compared to the commercial porcine acellular dermal matrix (DC-ADM), TS-ADM has distinctive features in morphology, thermal stability, degradability and water vapor transmission. TS-ADM was more readily degradable than DC-ADM in vitro and in vivo. In both rat and mini-pig skin wound healing experiments, TS-ADM was shown to significantly promote granulation growth, collagen deposition, angiogenesis and re-epithelialization, which may be attributed to the high expression of transforming growth factor-beta 1 (TGF-β1), alpha-smooth muscle actin (α-SMA) and CD31. Herein, the novel TS-ADM, used as a low-cost bioactive dressing, could form a microenvironment conducive to wound healing.
Collapse
Affiliation(s)
- Dongsheng Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Wendell Q Sun
- Institute of Biothermal Science and Technology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Tong Wang
- School of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Yonglin Gao
- School of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Zeping Xie
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, PR China
| | - Juanjuan Zhao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, PR China
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Meifang Zhu
- State Key Lab of Chemical Fibers & Polymer Materials, College of Materials Science & Engineering, Donghua University, Shanghai 201620, PR China
| | - Shumin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, PR China
| | - Peng Wang
- Department of Plastic and Aesthetic Center, Yantai Yuhuangding Hospital, Yantai 264000, PR China.
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
7
|
Maldonado-Cabrera B, Sánchez-Machado DI, López-Cervantes J, Osuna-Chávez RF, Escárcega-Galaz AA, Robles-Zepeda RE, Sanches-Silva A. Therapeutic effects of chitosan in veterinary dermatology: A systematic review of the literature. Prev Vet Med 2021; 190:105325. [PMID: 33744675 DOI: 10.1016/j.prevetmed.2021.105325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/20/2023]
Abstract
Chitosan is a natural polysaccharide with biocompatibility, biodegradability, nontoxicity, antimicrobial, and hemostatic properties. This biopolymer has been used in different pharmaceutical forms; therefore, it has an attractive potential for dermal applications in veterinary medicine. The aim of this review is to assess the healing potential of chitosan, based on its dermatological effects on animals, to enrich the therapeutic options of veterinary clinicians. A systematic review was conducted based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) strategy, retrieving 1,032 studies and selecting 39 after the inclusion and exclusion criteria were applied. The studies included reports with confirmed positive effects (n = 46/99, 46.5 %) (P < 0.05), with positive effects (n = 49.5/99, 49.5 %), and with no effect (n = 4/99, 4 %); none of the studies reported adverse effects. There is an association between frequency of application and a decrease in healing time (P = 0.038); applying chitosan "every 48-72 hours" was the most recommended frequency (n = 10/19, 52.9 %). Chitosan, when applied to skin lesions on animals, produces positive effects on healing, potentially becoming a safe biomaterial for skin treatments in veterinary practice. As an initial protocol, we suggest applying chitosan every 48-72 hours for at least 2 weeks (7 applications).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ana Sanches-Silva
- National Institute of Agrarian and Veterinary Research, Vila do Conde, Portugal; Center for Study in Animal Science (CECA), University of Oporto, Oporto, Portugal
| |
Collapse
|
8
|
Bilayer Scaffolds for Interface Tissue Engineering and Regenerative Medicine: A Systematic Reviews. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:83-113. [PMID: 33931833 DOI: 10.1007/5584_2021_637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE This systematic review focus on the application of bilayer scaffolds as an engaging structure for the engineering of multilayered tissues, including vascular and osteochondral tissues, skin, nerve, and urinary bladder. This article provides a concise literature review of different types of bilayer scaffolds to understand their efficacy in targeted tissue engineering. METHODS To this aim, electronic search in the English language was performed in PMC, NBCI, and PubMed from April 2008 to December 2019 based on the PRISMA guidelines. Animal studies, including the "bilayer scaffold" and at least one of the following items were examined: osteochondral tissue, bone, skin, neural tissue, urinary bladder, vascular system. The articles which didn't include "tissue engineering" and just in vitro studies were excluded. RESULTS Totally, 600 articles were evaluated; related articles were 145, and 35 full-text English articles met all the criteria. Fifteen articles in soft tissue engineering and twenty items in hard tissue engineering were the results of this exploration. Based on selected papers, it was revealed that the bilayer scaffolds were used in the regeneration of the multilayered tissues. The highest multilayered tissue regeneration has been achieved when bilayer scaffolds were used with mesenchymal stem cells and differentiation medium before implanting. Among the studies being reported in this review, bone marrow mesenchymal stem cells are the most studied mesenchymal stem cells. Among different kinds of multilayer tissue, the bilayer scaffold has been most used in osteochondral tissue engineering in which collagen and PLGA have been the most frequently used biomaterials. After osteochondral tissue engineering, bilayer scaffolds were widely used in skin tissue engineering. CONCLUSION The current review aimed to manifest the researcher and surgeons to use a more sophisticated bilayer scaffold in combinations of appropriate stem cells, and different can improve multilayer tissue regeneration. This systematic review can pave a way to design a suitable bilayer scaffold for a specific target tissue and conjunction with proper stem cells.
Collapse
|
9
|
Vana LPM, Battlehner CN, Ferreira MA, Caldini EG, Gemperli R, Alonso N. Comparative long-term study between two dermal regeneration templates for the reconstruction of burn scar contractures in humans: Clinical and histological results. Burns 2019; 46:596-608. [PMID: 31645293 DOI: 10.1016/j.burns.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/15/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023]
Abstract
The advent of dermal regeneration templates has fostered major advances in the treatment of acute burns and their sequelae, in the last three decades. Both data on morphological aspects of the newly-formed tissue, and clinical trials comparing different templates, are few. The goal of this study was to prospectively analyze the outcome of randomized patients treated with two of the existing templates, followed by thin skin autograft. They are both 2 mm-thick bovine collagen templates (Matriderm® and Integra®), the latter includes a superficial silicone layer. Surgery was performed on patients with impaired mobility resulting from burn sequelae (n = 12 per template) in a two-step procedure. Negative pressure therapy was applied after surgery; patients were monitored for 12 months. No intra or postoperative complications were observed. Data on scar skin quality (Vancouver scar scale), rate of mobility recovery, and graft contraction were recorded; as well as morphological analyses at light microscopical level. Improvement in mobility and skin quality were demonstrated along with graft contraction, in all patients. The double layer template showed the best performance in retraction rate, skin quality and mobility recovery. The subepidermal newly-formed connective tissue showed no histoarchitectural differences between the templates. The double layer template was not absorbed up to 12 months after placement.
Collapse
Affiliation(s)
- Luiz Philipe Molina Vana
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR. Divisao de Cirurgia Plastica e Queimaduras.
| | - Cláudia Naves Battlehner
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR. Laboratorio de Biologia Celular, LIM59, Departamento de Patologia
| | - Marcelo Alves Ferreira
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR. Laboratorio de Biologia Celular, LIM59, Departamento de Patologia
| | - Elia Garcia Caldini
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR. Laboratorio de Biologia Celular, LIM59, Departamento de Patologia
| | - Rolf Gemperli
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR. Divisao de Cirurgia Plastica e Queimaduras
| | - Nivaldo Alonso
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR. Divisao de Cirurgia Plastica e Queimaduras
| |
Collapse
|
10
|
Dhasmana A, Singh L, Roy P, Mishra NC. Silk fibroin protein modified acellular dermal matrix for tissue repairing and regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:313-324. [DOI: 10.1016/j.msec.2018.12.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/13/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
|
11
|
Bing Z, Feng L, Wu CS, Du JT, Liu YF, Liu SX. Acellular dermal matrix contributes to epithelialization in patients with chronic sinusitis. J Biomater Appl 2019; 33:1053-1059. [PMID: 30651053 DOI: 10.1177/0885328218822636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Nasal endoscopic surgery is widely used for nasal diseases, including sinusitis and tumors. However, scar hyperplasia, nasal irritation, scab, and nasal obstruction delay nasal mucosal recovery, with prolonged cleaning exacerbating the patient's financial burden. Here, we presented a novel approach for the treatment of nasal mucosal defects, termed acellular dermal matrix. METHODS A total of 31 patients with bilateral chronic sinusitis (maxillary sinusitis and ethmoid sinusitis) underwent nasal surgery and nasal mucosal repair in September-October 2016. We divided the nasal cavities of each patient into control and acellular dermal matrix groups, randomly selected one side for nasal mucosal repair by surgery. A suitable acellular dermal matrix size was selected according to the defect in each patient. After pruning, the acellular dermal matrix was placed on the wound surface and filled with gelatin sponge. All patients were followed up for 14 weeks to compare nasal mucosal epithelialization between the control and acellular dermal matrix groups. Results:No obvious complications and adverse reactions were observed after nasal surgery. Lund-Kennedy scores in the acellular dermal matrix group were significantly decreased compared with the control group at 8 (0 (0, 1) vs. 2 (2, 4); P<0.05) weeks. Epithelialization time of eight weeks in the acellular dermal matrix groups was significantly decreased than the control group of 14 weeks. CONCLUSION Acellular dermal matrix provides a growth framework for the healthy mucosa on the wounded surface and reduces postoperative epithelialization time.
Collapse
Affiliation(s)
- Zhong Bing
- Sichuan University, West China Hospital, Department of Otolaryngology Head and Neck Surgery, Chengdu, Sichuan, China
| | - Liu Feng
- Sichuan University, West China Hospital, Department of Otolaryngology Head and Neck Surgery, Chengdu, Sichuan, China
| | - Chun-Shu Wu
- Sichuan University, West China Hospital, Department of Otolaryngology Head and Neck Surgery, Chengdu, Sichuan, China
| | - Jin-Tao Du
- Sichuan University, West China Hospital, Department of Otolaryngology Head and Neck Surgery, Chengdu, Sichuan, China
| | - Ya-Feng Liu
- Sichuan University, West China Hospital, Department of Otolaryngology Head and Neck Surgery, Chengdu, Sichuan, China
| | - Shi-Xi Liu
- Sichuan University, West China Hospital, Department of Otolaryngology Head and Neck Surgery, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds. Cell Tissue Res 2018; 375:709-721. [PMID: 30338376 DOI: 10.1007/s00441-018-2927-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Full-thickness skin defect is one of the main clinical problems, which cannot be repaired spontaneously. The aim of this study was to evaluate the feasibility of combining nanofibers with ADM as a bilayer scaffold for treatment of full-thickness skin wounds in a single-step procedure. The nanofibrous polycaprolactone/fibrinogen scaffolds were fabricated by electrospinning. Subsequently, mesenchymal stem cells were isolated from rat adipose tissues and characterized by flow cytometry. Cell adhesion, proliferation, and the epidermal differentiation potential of adipose-derived stem cells (ADSCs) on nanofibrous scaffolds were investigated by scanning electron microscopy (SEM), alamarBlue, and real-time PCR, respectively. In animal studies, full-thickness excisional wounds were created on the back of rats and treated with following groups: ADM, ADM-ADSCs, nanofiber, nanofiber-ADSCs, bilayer, and bilayer-ADSCs. In all groups, wounds were harvested on days 14 and 21 after treatment to evaluate re-epithelialization, blood vessel density, and collagen content. The results indicated that ADSCs seeded on ADM, nanofiber, and bilayer scaffolds can promote re-epithelialization, angiogenesis, and collagen remodeling in comparison with cell-free scaffolds. In conclusion, nanofiber-ADSCs showed the best results for re-epithelialization (according to histological scoring), average blood vessel density (92.7 ± 6.8), and collagen density (87.4 ± 4.9%) when compared to the control and other experimental groups.
Collapse
|
13
|
Schultz GS, Woo K, Weir D, Yang Q. Effectiveness of a monofilament wound debridement pad at removing biofilm and slough: ex vivo and clinical performance. J Wound Care 2018; 27:80-90. [DOI: 10.12968/jowc.2018.27.2.80] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gregory S. Schultz
- Department of Obstetrics & Gynecology, University of Florida, Gainesville, Florida, US
| | - Kevin Woo
- Associate Professor, School of Nursing, School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Dot Weir
- Catholic Health Advanced Wound Healing Centers, Buffalo, NY, US
| | - Qingping Yang
- The Institute for Wound Research at the University of Florida, Department of Obstetrics & Gynecology, University of Florida, Gainesville, FL, US
| |
Collapse
|
14
|
Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. ScientificWorldJournal 2017; 2017:8639898. [PMID: 28567441 PMCID: PMC5439263 DOI: 10.1155/2017/8639898] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 01/05/2023] Open
Abstract
Chitosan is a naturally occurring polysaccharide obtained from chitin, present in abundance in the exoskeletons of crustaceans and insects. It has aroused great interest as a biomaterial for tissue engineering on account of its biocompatibility and biodegradation and its affinity for biomolecules. A significant number of research groups have investigated the application of chitosan as scaffolds for tissue regeneration. However, there is a wide variability in terms of physicochemical characteristics of chitosan used in some studies and its combinations with other biomaterials, making it difficult to compare results and standardize its properties. The current systematic review of literature on the use of chitosan for tissue regeneration consisted of a study of 478 articles in the PubMed database, which resulted, after applying inclusion criteria, in the selection of 61 catalogued, critically analysed works. The results demonstrated the effectiveness of chitosan-based biomaterials in 93.4% of the studies reviewed, whether or not combined with cells and growth factors, in the regeneration of various types of tissues in animals. However, the absence of clinical studies in humans, the inadequate experimental designs, and the lack of information concerning chitosan's characteristics limit the reproducibility and relevance of studies and the clinical applicability of chitosan.
Collapse
|
15
|
Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS One 2016; 11:e0167056. [PMID: 27902740 PMCID: PMC5130240 DOI: 10.1371/journal.pone.0167056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023] Open
Abstract
Tissue-engineered constructs need to become quickly vascularized in order to ensure graft take. One way of achieving this is to incorporate endothelial cells (EC) into the construct. The adipose tissue stromal vascular fraction (adipose-SVF) might provide an alternative source for endothelial cells as adipose tissue can easily be obtained by liposuction. Since adipose-EC are now gaining more interest in tissue engineering, we aimed to extensively characterize endothelial cells from adipose tissue (adipose-EC) and compare them with endothelial cells from dermis (dermal-EC). The amount of endothelial cells before purification varied between 4–16% of the total stromal population. After MACS selection for CD31 positive cells, a >99% pure population of endothelial cells was obtained within two weeks of culture. Adipose- and dermal-EC expressed the typical endothelial markers PECAM-1, ICAM-1, Endoglin, VE-cadherin and VEGFR2 to a similar extent, with 80–99% of the cell population staining positive. With the exception of CXCR4, which was expressed on 29% of endothelial cells, all other chemokine receptors (CXCR1, 2, 3, and CCR2) were expressed on less than 5% of the endothelial cell populations. Adipose-EC proliferated similar to dermal-EC, but responded less to the mitogens bFGF and VEGF. A similar migration rate was found for both adipose-EC and dermal-EC in response to bFGF. Sprouting of adipose-EC and dermal-EC was induced by bFGF and VEGF in a 3D fibrin matrix. After stimulation of adipose-EC and dermal-EC with TNF-α an increased secretion was seen for PDGF-BB, but not uPA, PAI-1 or Angiopoietin-2. Furthermore, secretion of cytokines and chemokines (IL-6, CCL2, CCL5, CCL20, CXCL1, CXCL8 and CXCL10) was also upregulated by both adipose- and dermal-EC. The similar characteristics of adipose-EC compared to their dermal-derived counterpart make them particularly interesting for skin tissue engineering. In conclusion, we show here that adipose tissue provides for an excellent source of endothelial cells for tissue engineering purposes, since they are readily available, and easily isolated and amplified.
Collapse
|
16
|
Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL, Kargozar S, Amini N, Hamblin MR, Mozafari M, Samadikuchaksaraei A. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater 2016; 45:234-246. [PMID: 27591919 PMCID: PMC5069185 DOI: 10.1016/j.actbio.2016.08.053] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED There is an unmet clinical need for novel wound healing strategies to treat full thickness skin defects, especially in diabetic patients. We hypothesized that a scaffold could perform dual roles of a biomechanical support and a favorable biochemical environment for stem cells. Human umbilical cord perivascular cells (HUCPVCs) have been recently reported as a type of mesenchymal stem cell that can accelerate early wound healing in skin defects. However, there are only a limited number of studies that have incorporated these cells into natural scaffolds for dermal tissue engineering. The aim of the present study was to promote angiogenesis and accelerate wound healing by using HUCPVCs and decellularized dermal matrix (DDM) in a rat model of diabetic wounds. The DDM scaffolds were prepared from harvested human skin samples and histological, ultrastructural, molecular and mechanical assessments were carried out. In comparison with the control (without any treatment) and DDM alone group, full thickness excisional wounds treated with HUCPVCs-loaded DDM scaffolds demonstrated an accelerated wound closure rate, faster re-epithelization, more granulation tissue formation and decreased collagen deposition. Furthermore, immunofluorescence analysis showed that the VEGFR-2 expression and vascular density in the HUCPVCs-loaded DDM scaffold treated group were also significantly higher than the other groups at 7days post implantation. Since the rates of angiogenesis, re-epithelization and formation of granulation tissue are directly correlated with full thickness wound healing in patients, the proposed HUCPVCs-loaded DDM scaffolds may fulfil a role neglected by current treatment strategies. This pre-clinical proof-of-concept study warrants further clinical evaluation. STATEMENT OF SIGNIFICANCE The aim of the present study was to design a novel tissue-engineered system to promote angiogenesis, re-epithelization and granulation of skin tissue using human umbilical cord perivascular stem cells and decellularized dermal matrix natural scaffolds in rat diabetic wound models. The authors of this research article have been working on stem cells and tissue engineering scaffolds for years. According to our knowledge, there is a lack of an efficient system for the treatment of skin defects using tissue engineering strategy. Since the rates of angiogenesis, re-epithelization and granulation tissue are directly correlated with full thickness wound healing, the proposed HUCPVCs-loaded DDM scaffolds perfectly fills the niche neglected by current treatment strategies. This pre-clinical study demonstrates the proof-of-concept that necessitates clinical evaluations.
Collapse
Affiliation(s)
- P Brouki Milan
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - N Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - M T Joghataie
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - J Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - A Pazouki
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, United States.
| | - S Kargozar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - N Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - M R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, United States; Department of Dermatology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - M Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - A Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
17
|
Shankar KG, Kumar SU, Sowndarya S, Sridevi J, Angel SS, Rose C. Rumen tissue derived decellularized submucosa collagen or its chitosan-treated film as a cutaneous wound healant and 1H NMR-metabolite profiling of plasma. RSC Adv 2016. [DOI: 10.1039/c6ra21441j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Developing an ideal wound dressing material for skin defects is of significant importance in a clinical emergency and is currently a global burden.
Collapse
Affiliation(s)
- K. Gopal Shankar
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - S. Udhaya Kumar
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - S. Sowndarya
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - J. Sridevi
- Inorganic & Physical Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - S. Soniya Angel
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - C. Rose
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| |
Collapse
|
18
|
Martínez-Flores F, Chacón-Gómez M, Madinaveitia-Villanueva JA, Barrera-Lopez A, Aguirre-Cruz L, Querevalu-Murillo W. [The clinical use of cryopreserved human skin allografts for transplantation]. CIR CIR 2015; 83:485-91. [PMID: 26187707 DOI: 10.1016/j.circir.2015.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The biological recovery of human skin allografts is the gold standard for preservation in Skin Banks. However, there is no worldwide consensus about specific allocation criteria for preserved human skin allografts with living cells. A report is presented on the results of 5 years of experience of using human skin allografts in burned patient in the Skin and Tissue Bank at the "Instituto Nacional de Rehabilitacion" MATERIAL AND METHODS The human skin allografts were obtained from multi-organ donors. processed and preserved at -80 °C for 12 months. Allocation criteria were performed according to blood type match, clinical history, and burned body surface. RESULTS Up to now, the Skin and Tissue Bank at 'Instituto Nacional de Rehabilitacion" has processed and recovered 125,000 cm(2) of human skin allografts. It has performed 34 surgical implants on 21 burned patients. The average of burn body surface was 59.2%. More than two-thirds (67.7%) of recipients of skin allografts were matched of the same to type blood of the donor, and 66.6% survived after 126 days hospital stay. CONCLUSION It is proposed to consider recipient's blood group as allocation criteria to assign tissue; and use human skin allografts on patiens affected with burns over 30% of body surface (according the "rule of the 9").
Collapse
Affiliation(s)
- Francisco Martínez-Flores
- Banco de Piel y Tejidos, Instituto Nacional de Rehabilitación, Secretaría de Salud, México, D.F., México.
| | - María Chacón-Gómez
- Banco de Piel y Tejidos, Instituto Nacional de Rehabilitación, Secretaría de Salud, México, D.F., México
| | | | - Araceli Barrera-Lopez
- Banco de Piel y Tejidos, Instituto Nacional de Rehabilitación, Secretaría de Salud, México, D.F., México
| | - Lucinda Aguirre-Cruz
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía «Manuel Velasco Suarez», Secretaría de Salud, México, D.F., México
| | - Walter Querevalu-Murillo
- Coordinación de Donación de Órganos y Tejidos, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, D.F., México
| |
Collapse
|
19
|
Acellular Hydrogels for Regenerative Burn Wound Healing: Translation from a Porcine Model. J Invest Dermatol 2015; 135:2519-2529. [PMID: 26358387 PMCID: PMC4570841 DOI: 10.1038/jid.2015.182] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Currently available skin grafts and skin substitute for healing following third-degree burn injuries is fraught with complications, often resulting in long-term physical and psychological sequelae. Synthetic treatment that can promote wound healing in a regenerative fashion would provide an off-the-shelf, non-immunogenic strategy to improve clinical care of severe burn wounds. Here, we demonstrate vulnerary efficacy and accelerated healing mechanism of dextran-based hydrogel in third-degree porcine burn model. The model was optimized to allow examination of the hydrogel treatment for clinical translation and its regenerative response mechanisms. Hydrogel treatment accelerated third-degree burn wound healing by rapid wound closure, improved reepithelialization, enhanced extracellular matrix remodeling, and greater nerve reinnervation, compared to the dressing treated group. These effects appear to be mediated through the ability of the hydrogel to facilitate a rapid but brief initial inflammatory response that coherently stimulates neovascularization within the granulation tissue during the first week of treatment, followed by an efficient vascular regression to promote a regenerative healing process. Our results suggest that the dextran-based hydrogels may substantially improve healing quality and reduce skin grafting incidents and thus pave the way for clinical studies to improve the care of severe burn injury patients.
Collapse
|