1
|
Du L, Gan Y, Zheng B, Huang J, Hu Z, Miao Y. An optimized force-triggered density gradient sedimentation method for isolation of pelage follicle dermal papilla cells from neonatal mouse skin. Stem Cell Res Ther 2023; 14:140. [PMID: 37226186 PMCID: PMC10210473 DOI: 10.1186/s13287-023-03343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The dermal papilla cells are a specialized population of mesenchymal cells located at the base of the hair follicle (HF), which possess the capacity to regulate HF morphogenesis and regeneration. However, lack of cell-type specific surface markers restricts the isolation of DP cells and application for tissue engineering purposes. METHODS We describe a novel force-triggered density gradient sedimentation (FDGS) method to efficiently obtain purified follicular DP-spheres cells from neonatal mouse back skin, utilizing only centrifugation and optimized density gradients. RESULTS Expression of characteristic DP cell markers, alkaline phosphatase, β-catenin, versican, and neural cell adhesion molecules, were confirmed by immunofluorescence. Further, the patch assays demonstrated that DP cells maintained their hair regenerative capacity in vivo. Compared with current methods, including microdissection and fluorescence-activated cell sorting, the FDGS technique is simpler and more efficient for isolating DP cells from neonatal mouse skin. CONCLUSIONS The FDGS method will improve the research potential of neonatal mouse pelage-derived DP cells for tissue engineering purposes.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital of Southern Medical University, 1838 North Guangzhou AV, Guangzhou, Guangdong, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital of Southern Medical University, 1838 North Guangzhou AV, Guangzhou, Guangdong, China
| | - Bowen Zheng
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital of Southern Medical University, 1838 North Guangzhou AV, Guangzhou, Guangdong, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital of Southern Medical University, 1838 North Guangzhou AV, Guangzhou, Guangdong, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital of Southern Medical University, 1838 North Guangzhou AV, Guangzhou, Guangdong, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital of Southern Medical University, 1838 North Guangzhou AV, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Evin N, Tosun Z, Aktan TM, Duman S, Harmankaya I, Yavas G. Effects of Adipose-Derived Stem Cells and Platelet-Rich Plasma for Prevention of Alopecia and Other Skin Complications of Radiotherapy. Ann Plast Surg 2021; 86:588-597. [PMID: 33141771 DOI: 10.1097/sap.0000000000002573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Radiotherapy (RT) involves the use of ionizing radiation in treating malignancies and benign disorders. However, RT damages target and healthy surrounding tissues in a dose-dependent manner. This effectively reduces patient compliance and quality of life, thereby warranting the prevention of RT-induced adverse effects on skin. Adipose-derived stem cells (ASCs) are used to treat RT-induced damage and platelet-rich plasma (PRP) provides a scaffold that potentiates the effects of ASCs. Thus, the aim of this study was to determine the mechanism employed by ASCs and PRP in protecting against RT-induced adverse effects. METHODS We have established an immunodeficient mouse transplantation model using which human hair follicular units were implanted. When the follicular units were macroscopically and microscopically mature and anagenic, we administered localized RT. Subsequently, the mice were randomly divided into 4 groups based on the subcutaneous injection of the following to the irradiated transplantation site: saline, PRP, ASCs, and a combination of ASCs and PRP. Next, we used macroscopic and microscopic analyses to determine the protective effects of the injected solutions on skin and hair follicles. RESULTS Adipose-derived stem cells reduced RT-induced adverse effects, such as impaired wound healing, alopecia, skin atrophy, and fibrosis by suppressing inflammation, dystrophy, degeneration, connective tissue synthesis, and apoptosis and increasing cellular proliferation, differentiation, and signaling. Moreover, these effects were augmented by PRP. CONCLUSIONS Thus, co-administering ASCs with PRP in mice prevented RT-induced adverse effects and can be tested for use in clinical practice.
Collapse
Affiliation(s)
- Nuh Evin
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Ordu State Hospital, Ordu
| | - Zekeriya Tosun
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Selcuk University Faculty of Medicine
| | - Tahsin Murad Aktan
- Department of Histology and Embryology, Necmettin Erbakan University Faculty of Medicine
| | - Selcuk Duman
- Department of Histology and Embryology, Necmettin Erbakan University Faculty of Medicine
| | - Ismail Harmankaya
- Department of Medical Pathology, Selcuk University Faculty of Medicine, Konya
| | - Güler Yavas
- Department of Radiation Oncology, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Kim JY, Kang BM, Lee JS, Park HJ, Wi HJ, Yoon JS, Ahn C, Shin S, Kim KH, Jung KC, Kwon O. UVB-induced depletion of donor-derived dendritic cells prevents allograft rejection of immune-privileged hair follicles in humanized mice. Am J Transplant 2019; 19:1344-1355. [PMID: 30500995 DOI: 10.1111/ajt.15207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/25/2023]
Abstract
Dendritic cells (DCs) are key targets for immunity and tolerance induction; they present donor antigens to recipient T cells by donor- and recipient-derived pathways. Donor-derived DCs, which are critical during the acute posttransplant period, can be depleted in graft tissue by forced migration via ultraviolet B light (UVB) irradiation. Here, we investigated the tolerogenic potential of donor-derived DC depletion through in vivo and ex vivo UVB preirradiation (UV) combined with the injection of anti-CD154 antibody (Ab) into recipients in an MHC-mismatched hair follicle (HF) allograft model in humanized mice. Surprisingly, human HF allografts achieved long-term survival with newly growing pigmented hair shafts in both Ab-treated groups (Ab-only and UV plus Ab) and in the UV-only group, whereas the control mice rejected all HF allografts with no hair regrowth. Perifollicular human CD3+ T cell and MHC class II+ cell infiltration was significantly diminished in the presence of UV and/or Ab treatment. HF allografts in the UV-only group showed stable maintenance of the immune privilege in the HF epithelium without evidence of antigen-specific T cell tolerance, which is likely promoted by normal HFs in vivo. This immunomodulatory strategy targeting the donor tissue exhibited novel biological relevance for clinical allogeneic transplantation without generalized immunosuppression.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Bo Mi Kang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ji Su Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hi-Jung Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology and Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Joo Wi
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology and Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Seon Yoon
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Curie Ahn
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine; Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Boramae Hospital, Seoul, Korea.,Seoul Metropolitan Government Public Cord Blood Bank, Seoul, Korea
| | - Kyu Han Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology and Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|