1
|
Dorchei F, Heydari A, Kroneková Z, Kronek J, Pelach M, Cseriová Z, Chorvát D, Zúñiga-Navarrete F, Rios PD, McGarrigle J, Ghani S, Isa D, Joshi I, Vasuthas K, Rokstad AMA, Oberholzer J, Raus V, Lacík I. Postmodification with Polycations Enhances Key Properties of Alginate-Based Multicomponent Microcapsules. Biomacromolecules 2024; 25:4118-4138. [PMID: 38857534 DOI: 10.1021/acs.biomac.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.
Collapse
Affiliation(s)
- Faeze Dorchei
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Abolfazl Heydari
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Michal Pelach
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Zuzana Cseriová
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Dušan Chorvát
- Department of Biophotonics, International Laser Centre, Slovak Centre of Scientific and Technical Information, Ilkovičova 3, 841 04 Bratislava, Slovakia
| | - Fernando Zúñiga-Navarrete
- Department of Proteomics, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter D Rios
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - James McGarrigle
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Sofia Ghani
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Douglas Isa
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Ira Joshi
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Kalaiyarasi Vasuthas
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - Anne Mari A Rokstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - José Oberholzer
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| |
Collapse
|
2
|
Mukherjee S, Kim B, Cheng LY, Doerfert MD, Li J, Hernandez A, Liang L, Jarvis MI, Rios PD, Ghani S, Joshi I, Isa D, Ray T, Terlier T, Fell C, Song P, Miranda RN, Oberholzer J, Zhang DY, Veiseh O. Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate. Nat Biomed Eng 2023; 7:867-886. [PMID: 37106151 PMCID: PMC10593184 DOI: 10.1038/s41551-023-01016-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/27/2023] [Indexed: 04/29/2023]
Abstract
Screening implantable biomaterials for antifibrotic properties is constrained by the need for in vivo testing. Here we show that the throughput of in vivo screening can be increased by cellularly barcoding a chemically modified combinatorial library of hydrogel formulations. The method involves the implantation of a mixture of alginate formulations, each barcoded with human umbilical vein endothelial cells from different donors, and the association of the identity and performance of each formulation by genotyping single nucleotide polymorphisms of the cells via next-generation sequencing. We used the method to screen 20 alginate formulations in a single mouse and 100 alginate formulations in a single non-human primate, and identified three lead hydrogel formulations with antifibrotic properties. Encapsulating human islets with one of the formulations led to long-term glycaemic control in a mouse model of diabetes, and coating medical-grade catheters with the other two formulations prevented fibrotic overgrowth. High-throughput screening of barcoded biomaterials in vivo may help identify formulations that enhance the long-term performance of medical devices and of biomaterial-encapsulated therapeutic cells.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, USA
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Lauren Y Cheng
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Jiaming Li
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Lily Liang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Maria I Jarvis
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | | | | | - Trisha Ray
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Cody Fell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ping Song
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose Oberholzer
- Division of Transplant Surgery, University of Virginia, Charlottesville, VA, USA
| | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA.
- NuProbe USA, Houston, TX, USA.
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Syanda AM, Kringstad VI, Blackford SJI, Kjesbu JS, Ng SS, Ma L, Xiao F, Coron AE, Rokstad AMA, Modi S, Rashid ST, Strand BL. Sulfated Alginate Reduces Pericapsular Fibrotic Overgrowth on Encapsulated cGMP-Compliant hPSC-Hepatocytes in Mice. Front Bioeng Biotechnol 2022; 9:816542. [PMID: 35308825 PMCID: PMC8928731 DOI: 10.3389/fbioe.2021.816542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Intra-peritoneal placement of alginate encapsulated human induced pluripotent stem cell-derived hepatocytes (hPSC-Heps) represents a potential new bridging therapy for acute liver failure. One of the rate-limiting steps that needs to be overcome to make such a procedure more efficacious and safer is to reduce the accumulation of fibrotic tissue around the encapsulated cells to allow the free passage of relevant molecules in and out for metabolism. Novel chemical compositions of alginate afford the possibility of achieving this aim. We accordingly used sulfated alginate and demonstrated that this material reduced fibrotic overgrowth whilst not impeding the process of encapsulation nor cell function. Cumulatively, this suggests sulfated alginate could be a more suitable material to encapsulate hPSC-hepatocyte prior to human use.
Collapse
Affiliation(s)
- Adam M. Syanda
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Vera I. Kringstad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Samuel J. I. Blackford
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Joachim S. Kjesbu
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Liang Ma
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Fang Xiao
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Abba E. Coron
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Mari A. Rokstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sunil Modi
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - S. Tamir Rashid
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Berit Løkensgard Strand
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- *Correspondence: Berit Løkensgard Strand,
| |
Collapse
|
4
|
Len’shina NA, Konev AN, Baten’kin AA, Bardina PS, Cherkasova EI, Kashina AV, Zagainova EV, Zagainov VE, Chesnokov SA. Alginate Functionalization for the Microencapsulation of Insulin Producing Cells. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Adrian E, Treľová D, Filová E, Kumorek M, Lobaz V, Poreba R, Janoušková O, Pop-Georgievski O, Lacík I, Kubies D. Complexation of CXCL12, FGF-2 and VEGF with Heparin Modulates the Protein Release from Alginate Microbeads. Int J Mol Sci 2021; 22:11666. [PMID: 34769095 PMCID: PMC8583835 DOI: 10.3390/ijms222111666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.
Collapse
Affiliation(s)
- Edyta Adrian
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Dušana Treľová
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
| | - Elena Filová
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Marta Kumorek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Rafal Poreba
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Igor Lacík
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
- Centre for Advanced Materials Application of the Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| | - Dana Kubies
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| |
Collapse
|
6
|
Biomaterial-Assisted Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22168657. [PMID: 34445363 PMCID: PMC8395440 DOI: 10.3390/ijms22168657] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
This review aims to show case recent regenerative medicine based on biomaterial technologies. Regenerative medicine has arousing substantial interest throughout the world, with “The enhancement of cell activity” one of the essential concepts for the development of regenerative medicine. For example, drug research on drug screening is an important field of regenerative medicine, with the purpose of efficient evaluation of drug effects. It is crucial to enhance cell activity in the body for drug research because the difference in cell condition between in vitro and in vivo leads to a gap in drug evaluation. Biomaterial technology is essential for the further development of regenerative medicine because biomaterials effectively support cell culture or cell transplantation with high cell viability or activity. For example, biomaterial-based cell culture and drug screening could obtain information similar to preclinical or clinical studies. In the case of in vivo studies, biomaterials can assist cell activity, such as natural healing potential, leading to efficient tissue repair of damaged tissue. Therefore, regenerative medicine combined with biomaterials has been noted. For the research of biomaterial-based regenerative medicine, the research objective of regenerative medicine should link to the properties of the biomaterial used in the study. This review introduces regenerative medicine with biomaterial.
Collapse
|
7
|
Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydr Polym 2021; 266:118128. [PMID: 34044944 DOI: 10.1016/j.carbpol.2021.118128] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 12/26/2022]
Abstract
Conventional stem cell delivery typically utilize administration of directly injection of allogenic cells or domesticated autogenic cells. It may lead to immune clearance of these cells by the host immune systems. Alginate microgels have been demonstrated to improve the survival of encapsulated cells and overcome rapid immune clearance after transplantation. Moreover, alginate microgels can serve as three-dimensional extracellular matrix to support cell growth and protect allogenic cells from rapid immune clearance, with functions as delivery vehicles to achieve sustained release of therapeutic proteins and growth factors from the encapsulated cells. Besides, cell-loaded alginate microgels can potentially be applied in regenerative medicine by serving as injectable engineered scaffolds to support tissue regrowth. In this review, the properties of alginate and different methods to produce alginate microgels are introduced firstly. Then, we focus on diverse applications of alginate microgels for cell delivery in tissue engineering and regenerative medicine.
Collapse
|
8
|
Li Y, Frei AW, Yang EY, Labrada-Miravet I, Sun C, Rong Y, Samojlik MM, Bayer AL, Stabler CL. In vitro platform establishes antigen-specific CD8 + T cell cytotoxicity to encapsulated cells via indirect antigen recognition. Biomaterials 2020; 256:120182. [PMID: 32599358 PMCID: PMC7480933 DOI: 10.1016/j.biomaterials.2020.120182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
The curative potential of non-autologous cellular therapy is hindered by the requirement of anti-rejection therapy. Cellular encapsulation within nondegradable biomaterials has the potential to inhibit immune rejection, but the efficacy of this approach in robust preclinical and clinical models remains poor. While the responses of innate immune cells to the encapsulating material have been characterized, little attention has been paid to the contributions of adaptive immunity in encapsulated graft destabilization. Avoiding the limitations of animal models, we established an efficient, antigen-specific in vitro platform capable of delineating direct and indirect host T cell recognition to microencapsulated cellular grafts and evaluated their consequential impacts. Using ovalbumin (OVA) as a model antigen, we determined that alginate microencapsulation abrogates direct CD8+ T cell activation by interrupting donor-host interaction; however, indirect T cell activation, mediated by host antigen presenting cells (APCs) primed with shed donor antigens, still occurs. These activated T cells imparted cytotoxicity on the encapsulated cells, likely via diffusion of cytotoxic solutes. Overall, this platform delivers unique mechanistic insight into the impacts of hydrogel encapsulation on host adaptive immune responses, comprehensively addressing a long-standing hypothesis of the field. Furthermore, it provides an efficient benchtop screening tool for the investigation of new encapsulation methods and/or synergistic immunomodulatory agents.
Collapse
Affiliation(s)
- Ying Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Anthony W Frei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ethan Y Yang
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA
| | - Irayme Labrada-Miravet
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chuqiao Sun
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Yanan Rong
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Allison L Bayer
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Marfil‐Garza BA, Polishevska K, Pepper AR, Korbutt GS. Current State and Evidence of Cellular Encapsulation Strategies in Type 1 Diabetes. Compr Physiol 2020; 10:839-878. [DOI: 10.1002/cphy.c190033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr Polym 2020; 229:115514. [DOI: 10.1016/j.carbpol.2019.115514] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022]
|
11
|
Legøy TA, Vethe H, Abadpour S, Strand BL, Scholz H, Paulo JA, Ræder H, Ghila L, Chera S. Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Sci Rep 2020; 10:414. [PMID: 31942009 PMCID: PMC6962451 DOI: 10.1038/s41598-019-57305-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process.
Collapse
Affiliation(s)
- Thomas Aga Legøy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
12
|
Dhamecha D, Movsas R, Sano U, Menon JU. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int J Pharm 2019; 569:118627. [PMID: 31421199 PMCID: PMC7073469 DOI: 10.1016/j.ijpharm.2019.118627] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
Polymers are the backbone of pharmaceutical drug delivery. There are several polymers with varying properties available today for use in different pharmaceutical applications. Alginate is widely used in biomedical research due to its attractive features such as biocompatibility, biodegradability, inertness, low cost, and ease of production and formulation. Encapsulation of therapeutic agents in alginate/alginate complex microspheres protects them from environmental stresses, including the acidic environment in the gastro-intestinal tract (GIT) and enzymatic degradation, and allows targeted and sustained delivery of the agents. Microencapsulation is playing an increasingly important role in drug delivery as evidenced by the recent surge in research articles on the use of alginate in the delivery of small molecules, cells, bacteria, proteins, vaccines, and for tissue engineering applications. Formulation of these alginate microspheres (AMS) are commonly achieved by conventional external gelation method using various instrumental manipulation such as vortexing, homogenization, ultrasonication or spray drying, and each method affects the overall particle characteristics. In this review, an inclusive summary of the currently available methods for the formulation of AMS, its recent use in the encapsulation and delivery of therapeutics, and future outlook will be discussed.
Collapse
Affiliation(s)
- Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Rachel Movsas
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ugene Sano
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
13
|
Zhu M, Wu H, Weng W, Kankala RK, Wang P, Zhou X, Long R, Wang S, Huang H, Xia Y, Liu Y. Bioactive nanoparticle embedded microcapsules for improving the efficacy of type I diabetes therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1658-1669. [PMID: 31402754 DOI: 10.1080/09205063.2019.1655217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In order to overcome the side effects of pancreatic transplantation and insulin injection treatment for type I diabetes, we established a drug delivery system employing nanoparticle embedded microcapsules (NEMs). The system co-encapsulated chitosan nanoparticles with γ-aminobutyric acid and β-TC-6 cells for combined drug and cell therapy in diabetes mellitus (DM). The NEMs, which were formed via high-voltage electrostatic method, had an excellent sphericity with a smooth surface. The average size NEM was 245.52 ± 22.00 μm, which indicated a good size for cell encapsulation. Haemolysis rate of NEMs at concentrations of 100, 200 or 300 mg/mL were all below 5%. Relative viability rates of L929 cells with the same concentrations at 24, 48 or 72 h were all above 80%. We implanted bioactive NEMs into type 1 DM mice to evaluate the effect of the combined therapy. The level of blood glucose in the group receiving the combined therapy decreased during the first 2 weeks of treatment. During the next week, the level of blood glucose stayed in a safe range. Body weight continuously increased during the postoperative period after combined therapy group. Oral glucose tolerance test (OGTT) performed after 24 d showed that the level of blood glucose combined therapy reached the maximum peak of 13.04 mmol/L, lower than 16.56 mmol/L for the cell therapy group. This primary study indicated that microencapsulation technology and combined therapy are promising for the treatment of type I diabetes mellitus.
Collapse
Affiliation(s)
- Mingzhi Zhu
- College of Chemical Engineering, Huaqiao University , Xiamen , P.R. China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University , Xinxiang , P.R. China
| | - Weiji Weng
- College of Chemical Engineering, Huaqiao University , Xiamen , P.R. China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University , Xiamen , P.R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University , Xiamen , P.R. China
| | - Pei Wang
- College of Chemical Engineering, Huaqiao University , Xiamen , P.R. China
| | - Xia Zhou
- College of Chemical Engineering, Huaqiao University , Xiamen , P.R. China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University , Xiamen , P.R. China
| | - Shibin Wang
- College of Chemical Engineering, Huaqiao University , Xiamen , P.R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University , Xiamen , P.R. China
| | - Haiwang Huang
- Internal Medicine Department, Xiamen Haicang Hospital , Xiamen , P.R. China
| | - Yanhua Xia
- Internal Medicine Department, Xiamen Haicang Hospital , Xiamen , P.R. China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University , Xiamen , P.R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University , Xiamen , P.R. China
| |
Collapse
|
14
|
Bitar CM, Markwick KE, Treľová D, Kroneková Z, Pelach M, Selerier CM, Dietrich J, Lacík I, Hoesli CA. Development of a microchannel emulsification process for pancreatic beta cell encapsulation. Biotechnol Prog 2019; 35:e2851. [PMID: 31131558 PMCID: PMC9285764 DOI: 10.1002/btpr.2851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
Abstract
In this study, we developed a high‐throughput microchannel emulsification process to encapsulate pancreatic beta cells in monodisperse alginate beads. The process builds on a stirred emulsification and internal gelation method previously adapted to pancreatic cell encapsulation. Alginate bead production was achieved by flowing a 0.5–2.5% alginate solution with cells and CaCO3 across a 1‐mm thick polytetrafluoroethylene plate with 700 × 200 μm rectangular straight‐through channels. Alginate beads ranging from 1.5–3 mm in diameter were obtained at production rates exceeding 140 mL/hr per microchannel. Compared to the stirred emulsification process, the microchannel emulsification beads had a narrower size distribution and demonstrated enhanced compressive burst strength. Both microchannel and stirred emulsification beads exhibited homogeneous profiles of 0.7% alginate concentration using an initial alginate solution concentration of 1.5%. Encapsulated beta cell viability of 89 ± 2% based on live/dead staining was achieved by minimizing the bead residence time in the acidified organic phase fluid. Microchannel emulsification is a promising method for clinical‐scale pancreatic beta cell encapsulation as well as other applications in the pharmaceutical, food, and cosmetic industries.
Collapse
Affiliation(s)
| | - Karen E. Markwick
- Department of Chemical EngineeringMcGill University Montreal Quebec Canada
| | - Dušana Treľová
- Department for Biomaterials ResearchPolymer Institute of the Slovak Academy of Sciences Bratislava Slovakia
| | - Zuzana Kroneková
- Department for Biomaterials ResearchPolymer Institute of the Slovak Academy of Sciences Bratislava Slovakia
| | - Michal Pelach
- Department for Biomaterials ResearchPolymer Institute of the Slovak Academy of Sciences Bratislava Slovakia
| | | | - James Dietrich
- Advanced Radio Frequency Systems Laboratory, CMC MicrosystemsUniversity of Manitoba Winnipeg Manitoba Canada
| | - Igor Lacík
- Department for Biomaterials ResearchPolymer Institute of the Slovak Academy of Sciences Bratislava Slovakia
| | - Corinne A. Hoesli
- Department of Chemical EngineeringMcGill University Montreal Quebec Canada
| |
Collapse
|
15
|
Pathak S, Regmi S, Shrestha P, Choi I, Doh KO, Jeong JH. Mesenchymal Stem Cell Capping on ECM-Anchored Caspase Inhibitor-Loaded PLGA Microspheres for Intraperitoneal Injection in DSS-Induced Murine Colitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901269. [PMID: 31018047 DOI: 10.1002/smll.201901269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered as a promising alternative for the treatment of various inflammatory disorders. However, poor viability and engraftment of MSCs after transplantation are major hurdles in mesenchymal stem cell therapy. Extracellular matrix (ECM)-coated scaffolds provide better cell attachment and mechanical support for MSCs after transplantation. A single-step method for ECM functionalization on poly(lactic-co-glycolic acid) (PLGA) microspheres using a novel compound, dopamine-conjugated poly(ethylene-alt-maleic acid), as a stabilizer during the preparation of microspheres is reported. The dopamine molecules on the surface of microspheres provide active sites for the conjugation of ECM in an aqueous solution. The results reveal that the viability of MSCs improves when they are coated over the ECM-functionalized PLGA microspheres (eMs). In addition, the incorporation of a broad-spectrum caspase inhibitor (IDN6556) into the eMs synergistically increases the viability of MSCs under in vitro conditions. Intraperitoneal injection of the MSC-microsphere hybrid alleviates experimental colitis in a murine model via inhibiting Th1 and Th17 differentiation of CD4+ T cells in colon-draining mesenteric lymph nodes. Therefore, drug-loaded ECM-coated surfaces may be considered as attractive tools for improving viability, proliferation, and functionality of MSCs following transplantation.
Collapse
Affiliation(s)
- Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Prakash Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Kyoung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
16
|
Duin S, Schütz K, Ahlfeld T, Lehmann S, Lode A, Ludwig B, Gelinsky M. 3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend. Adv Healthc Mater 2019; 8:e1801631. [PMID: 30835971 DOI: 10.1002/adhm.201801631] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Indexed: 12/16/2022]
Abstract
Transplantation of pancreatic islets is a promising strategy to alleviate the unstable blood-glucose control that some patients with diabetes type 1 exhibit and has seen many advances over the years. Protection of transplanted islets from the immune system can be accomplished by encapsulation within a hydrogel, the most investigated of which is alginate. In this study, islet encapsulation is combined with 3D extrusion bioprinting, an additive manufacturing method which enables the fabrication of 3D structures with a precise geometry to produce macroporous hydrogel constructs with embedded islets. Using a plottable hydrogel blend consisting of clinically approved ultrapure alginate and methylcellulose (Alg/MC) enables encapsulating pancreatic islets in macroporous 3D hydrogel constructs of defined geometry while retaining their viability, morphology, and functionality. Diffusion of glucose and insulin in the Alg/MC hydrogel is comparable to diffusion in plain alginate; the embedded islets continuously produce insulin and glucagon throughout the observation and still react to glucose stimulation albeit to a lesser degree than control islets.
Collapse
Affiliation(s)
- Sarah Duin
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Kathleen Schütz
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Tilman Ahlfeld
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Susann Lehmann
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Hospital Carl Gustav Carus of Technische Universität Dresden and German Centre for Diabetes Research Dresden, Tatzberg 47‐49 01307 Dresden Germany
| | - Anja Lode
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Barbara Ludwig
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Hospital Carl Gustav Carus of Technische Universität Dresden and German Centre for Diabetes Research Dresden, Tatzberg 47‐49 01307 Dresden Germany
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstraße 74 01307 Dresden Germany
| | - Michael Gelinsky
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| |
Collapse
|
17
|
Verheyen CA, Morales L, Sussman J, Paunovska K, Manzoli V, Ziebarth NM, Tomei AA. Characterization of Polyethylene Glycol-Reinforced Alginate Microcapsules for Mechanically Stable Cell Immunoisolation. MACROMOLECULAR MATERIALS AND ENGINEERING 2019; 304:1800679. [PMID: 31929732 PMCID: PMC6953757 DOI: 10.1002/mame.201800679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 06/02/2023]
Abstract
Islet transplantation within mechanically stable microcapsules offers the promise of long-term diabetes reversal without chronic immunosuppression. Reinforcing the ionically gelled network of alginate (ALG) hydrogels with covalently linked polyethylene glycol (PEG) may create hybrid structures with desirable mechanical properties. This report describes the fabrication of hybrid PEG-ALG interpenetrating polymer networks and the investigation of microcapsule swelling, surface modulus, rheology, compression, and permeability. It is demonstrated that hybrid networks are more resistant to bulk swelling and compressive deformation and display improved shape recovery and long-term resilience. Interestingly, it is shown that PEG-ALG networks behave like ALG during microscale surface deformation and small amplitude shear while exhibiting similar permeability properties. The results from this report's in vitro characterization are interpreted according to viscoelastic polymer theory and provide new insight into hybrid hydrogel mechanical behavior. This new understanding of PEG-ALG mechanical performance is then linked to previous work that demonstrated the success of hybrid polymer immunoisolation devices in vivo.
Collapse
Affiliation(s)
- Connor A Verheyen
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Laura Morales
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Joshua Sussman
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Kalina Paunovska
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Vita Manzoli
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Noel M Ziebarth
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL-33146, USA
| | - Alice A Tomei
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
18
|
|
19
|
Xu L, Guo Y, Huang Y, Xu Y, Lu Y, Wang Z. Hydrogel materials for the application of islet transplantation. J Biomater Appl 2019; 33:1252-1264. [PMID: 30791850 DOI: 10.1177/0885328219831391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes mellitus is a serious disease comprising approximately 10% of all diabetes cases, and the global incidence of type 1 diabetes mellitus is steadily rising without any promise of a cure in the near future. Although islet transplantation has proven to be an effective means of treating type 1 diabetes mellitus and promoting insulin independence in patients, its widespread implementation has been severely constrained by instances of post-transplantation islet cell death, rejection, and severe adverse immune responses. Islet encapsulation is an active area of research aimed at shielding implanted islets from immunological rejection and inflammation while still allowing for effective insulin and nutrient exchange with donor cells. Given their promising physical and chemical properties, hydrogels have been a major subject of focus in the field of islet transplantation and encapsulation technology, offering promising advances towards immunologically privileged islet implants. The present review therefore summarizes the current state of research regarding the use of hydrogels in the context of islet transplantation, including both natural molecular hydrogels and artificial polymer hydrogels, with the goal of understanding the current strengths and weaknesses of this treatment strategy.
Collapse
Affiliation(s)
- Liancheng Xu
- Suqian First Hospital, Suqian, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yibing Guo
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yang Xu
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuhua Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
20
|
LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus. Nat Commun 2018; 9:1488. [PMID: 29662071 PMCID: PMC5902555 DOI: 10.1038/s41467-018-03943-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is due to the selective destruction of islet beta cells by immune cells. Current therapies focused on repressing the immune attack or stimulating beta cell regeneration still have limited clinical efficacy. Therefore, it is timely to identify innovative targets to dampen the immune process, while promoting beta cell survival and function. Liver receptor homologue-1 (LRH-1) is a nuclear receptor that represses inflammation in digestive organs, and protects pancreatic islets against apoptosis. Here, we show that BL001, a small LRH-1 agonist, impedes hyperglycemia progression and the immune-dependent inflammation of pancreas in murine models of T1DM, and beta cell apoptosis in islets of type 2 diabetic patients, while increasing beta cell mass and insulin secretion. Thus, we suggest that LRH-1 agonism favors a dialogue between immune and islet cells, which could be druggable to protect against diabetes mellitus. Type 1 diabetes mellitus (T1DM) is characterized by beta cell loss because of an autoimmune attack. Here the authors show that an agonist for LRH-1/NR5A2, a nuclear receptor known to be protective against beta cell apoptosis, inhibits immune-mediated inflammation and hyperglycemia in T1DM mouse models.
Collapse
|
21
|
Krishnan R, Ko D, Foster CE, Liu W, Smink AM, de Haan B, De Vos P, Lakey JRT. Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials. Methods Mol Biol 2017; 1479:305-333. [PMID: 27738946 DOI: 10.1007/978-1-4939-6364-5_24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining characteristics of the response itself.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - David Ko
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - Clarence E Foster
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA.,Department of Transplantation, University of California Irvine, Orange, CA, USA
| | - Wendy Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - A M Smink
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Bart de Haan
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Paul De Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA. .,Department of Transplantation, University of California Irvine, Orange, CA, USA. .,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
22
|
Gonzalez-Pujana A, Santos E, Orive G, Pedraz JL, Hernandez RM. Cell microencapsulation technology: Current vision of its therapeutic potential through the administration routes. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Strand BL, Coron AE, Skjak‐Braek G. Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet. Stem Cells Transl Med 2017; 6:1053-1058. [PMID: 28186705 PMCID: PMC5442831 DOI: 10.1002/sctm.16-0116] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy. Host reactions toward the biomaterials used in the capsules may be one parameter limiting the long-term function of the graft in humans. The present article briefly discusses important capsule properties such as stability, permeability and biocompatibility, as well as possible strategies to overcome current challenges. Also, recent progress in capsule development as well as the production of insulin-producing cells from human stem cells that gives promising perspectives for the transplantation of encapsulated insulin-producing tissue is briefly discussed. Stem Cells Translational Medicine 2017;6:1053-1058.
Collapse
Affiliation(s)
- Berit L. Strand
- NOBIPOL, Department of BiotechnologyNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Abba E. Coron
- NOBIPOL, Department of BiotechnologyNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Gudmund Skjak‐Braek
- NOBIPOL, Department of BiotechnologyNTNU Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
24
|
Iuamoto LR, Franco AS, Suguita FY, Essu FF, Oliveira LT, Kato JM, Torsani MB, Meyer A, Andraus W, Chaib E, D'Albuquerque LAC. Human islet xenotransplantation in rodents: A literature review of experimental model trends. Clinics (Sao Paulo) 2017; 72:238-243. [PMID: 28492724 PMCID: PMC5401612 DOI: 10.6061/clinics/2017(04)08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Among the innovations for the treatment of type 1 diabetes, islet transplantation is a less invasive method of treatment, although it is still in development. One of the greatest barriers to this technique is the low number of pancreas donors and the low number of pancreases that are available for transplantation. Rodent models have been chosen in most studies of islet rejection and type 1 diabetes prevention to evaluate the quality and function of isolated human islets and to identify alternative solutions to the problem of islet scarcity. The purpose of this study is to conduct a review of islet xenotransplantation experiments from humans to rodents, to organize and analyze the parameters of these experiments, to describe trends in experimental modeling and to assess the viability of this procedure. In this study, we reviewed recently published research regarding islet xenotransplantation from humans to rodents, and we summarized the findings and organized the relevant data. The included studies were recent reports that involved xenotransplantation using human islets in a rodent model. We excluded the studies that related to isotransplantation, autotransplantation and allotransplantation. A total of 34 studies that related to xenotransplantation were selected for review based on their relevance and current data. Advances in the use of different graft sites may overcome autoimmunity and rejection after transplantation, which may solve the problem of the scarcity of islet donors in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Leandro Ryuchi Iuamoto
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | | | | | | | | | | | | | - Alberto Meyer
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Wellington Andraus
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Eleazar Chaib
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
25
|
Arlov Ø, Skjåk-Bræk G, Rokstad AM. Sulfated alginate microspheres associate with factor H and dampen the inflammatory cytokine response. Acta Biomater 2016; 42:180-188. [PMID: 27296843 DOI: 10.1016/j.actbio.2016.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED Alginate microspheres show promise for cell-encapsulation therapy but encounter challenges related to biocompatibility. In the present work we designed novel microbeads and microcapsules based on sulfated polyalternating MG alginate (SMG) and explored their inflammatory properties using a human whole blood model. SMG was either incorporated within the alginate microbeads or used as a secondary coat on poly-l-lysine (PLL)-containing microcapsules, resulting in reduction of the inflammatory cytokines (IL-1β, TNF, IL-6, IL-8, MIP-1α). The sulfated alginate microbeads exhibited a complement inert nature with no induction of terminal complement complex (TCC) above the values in freshly drawn blood and low surface accumulation of C3/C3b/iC3b. Conversely, SMG as a coating material lead to substantial TCC amounts and surface C3/C3b/iC3b. A common thread was an increased association of the complement inhibitor factor H to the alginate microbeads and microcapsules containing sulfated alginates. Factor H was also found to associate to non-sulfated alginate microbeads in lower amounts, indicating factor H binding as an inherent property of alginate. We conclude that the dampening effect on the cytokine response and increased factor H association points to sulfated alginate as a promising strategy for improving the biocompatibility of alginate microspheres. STATEMENT OF SIGNIFICANCE Alginate microspheres are candidate devices for cell encapsulation therapy. The concept is challenged by the inflammatory host response, and modification strategies for improved biocompatibility are urgently needed. One potential strategy is using sulfated alginates, acting as versatile heparin analogues with similar anti-inflammatory properties. We designed novel alginate microspheres using sulfated alginate with an alternating sequence mimicking glycosominoglycans. Evaluation in a physiologically relevant human whole blood model revealed a reduction of inflammatory cytokines by a sulfated alginate coating, and sulfated alginate microbeads were complement inert. These effects were correlated with a strong factor H association, which may represent the mechanistic explanation. This novel approach could improve the biocompatibility of alginate microspheres in vivo and present a new strategy toward clinical use.
Collapse
Affiliation(s)
- Øystein Arlov
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7034 Trondheim, Norway
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7034 Trondheim, Norway
| | - Anne Mari Rokstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Prinsesse Kristinas gate 1, 7030 Trondheim, Norway; Liasion Committee between the Central Norway Regional Health authority (RHA) and the Norwegian University of Science and Technology (NTNU), Norway.
| |
Collapse
|
26
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Takacova M, Hlouskova G, Zatovicova M, Benej M, Sedlakova O, Kopacek J, Pastorek J, Lacik I, Pastorekova S. Encapsulation of anti-carbonic anhydrase IX antibody in hydrogel microspheres for tumor targeting. J Enzyme Inhib Med Chem 2016; 31:110-118. [PMID: 27140748 DOI: 10.1080/14756366.2016.1177523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Encapsulation is a well-established method of biomaterial protection, controlled release, and efficient delivery. Here we evaluated encapsulation of monoclonal antibody M75 directed to tumor biomarker carbonic anhydrase IX (CA IX) into alginate microbeads (SA-beads) or microcapsules made of sodium alginate, cellulose sulfate, and poly(methylene-co-guanidine) (PMCG). M75 antibody release was quantified using ELISA and its binding properties were assessed by immunodetection methods. SA-beads showed rapid M75 antibody release in the first hour, followed by steady release during the whole experiment of 7 days. In contrast, the M75 release from PMCG capsules was gradual, reaching the maximum concentration on the 7th day. The release was more efficient at pH 6.8 compared to pH 7.4. The released antibody could recognize CA IX, and target the CA IX-positive cells in 3D spheroids. In conclusion, SA-beads and PMCG microcapsules can be considered as promising antibody reservoirs for targeting of cancer cells.
Collapse
Affiliation(s)
- Martina Takacova
- a Department of Molecular Medicine , Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia.,b Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute , Brno , Czech Republic , and
| | - Gabriela Hlouskova
- c Department for Biomaterials Research , Polymer Institute, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Miriam Zatovicova
- a Department of Molecular Medicine , Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Martin Benej
- a Department of Molecular Medicine , Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Olga Sedlakova
- a Department of Molecular Medicine , Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Juraj Kopacek
- a Department of Molecular Medicine , Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Jaromir Pastorek
- a Department of Molecular Medicine , Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Igor Lacik
- c Department for Biomaterials Research , Polymer Institute, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Silvia Pastorekova
- a Department of Molecular Medicine , Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia.,b Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute , Brno , Czech Republic , and
| |
Collapse
|
28
|
Richardson T, Barner S, Candiello J, Kumta PN, Banerjee I. Capsule stiffness regulates the efficiency of pancreatic differentiation of human embryonic stem cells. Acta Biomater 2016; 35:153-65. [PMID: 26911881 DOI: 10.1016/j.actbio.2016.02.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/24/2015] [Accepted: 02/17/2016] [Indexed: 12/14/2022]
Abstract
Encapsulation of donor islets using a hydrogel material is a well-studied strategy for islet transplantation, which protects donor islets from the host immune response. Replacement of donor islets by human embryonic stem cell (hESC) derived islets will also require a means of immune-isolating hESCs by encapsulation. However, a critical consideration of hESC differentiation is the effect of surrounding biophysical environment, in this case capsule biophysical properties, on differentiation. The objective of this study, thus, was to evaluate the effect of capsule properties on growth, viability, and differentiation of encapsulated hESCs throughout pancreatic induction. It was observed that even in the presence of soluble chemical cues for pancreatic induction, substrate properties can significantly modulate pancreatic differentiation, hence necessitating careful tuning of capsule properties. Capsules in the range of 4-7kPa supported cell growth and viability, whereas capsules of higher stiffness suppressed cell growth. While an increase in capsule stiffness enhanced differentiation at the intermediate definitive endoderm (DE) stage, increased stiffness strongly suppressed pancreatic progenitor (PP) induction. Signaling pathway analysis indicated an increase in pSMAD/pAKT levels with substrate stiffness likely the cause of enhancement of DE differentiation. In contrast, sonic hedgehog inhibition was more efficient under softer gel conditions, which is necessary for successful PP differentiation. STATEMENT OF SIGNIFICANCE Cell replacement therapy for type 1 diabetes (T1D), affecting millions of people worldwide, requires the immunoisolation of insulin-producing islets by encapsulation with a semi-impermeable material. Due to the shortage of donor islets, human pluripotent stem cell (hPSC) derived islets are an attractive alternative. However, properties of the encapsulating substrate are known to influence hPSC cell fate. In this work, we determine the effect of substrate stiffness on growth and pancreatic fate of encapsulated hPSCs. We precisely identify the range of substrate properties conducive for pancreatic cell fate, and also the mechanism by which substrate properties modify the cell signaling pathways and hence cell fate. Such information will be critical in driving regenerative cell therapy for long term treatment of T1D.
Collapse
Affiliation(s)
- Thomas Richardson
- Department of Chemical Engineering, University of Pittsburgh, United States
| | - Sierra Barner
- Department of Chemical Engineering, University of Pittsburgh, United States
| | - Joseph Candiello
- Department of Bioengineering, University of Pittsburgh, United States
| | - Prashant N Kumta
- Department of Chemical Engineering, University of Pittsburgh, United States; McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States; Department of Mechanical and Materials Science, University of Pittsburgh, United States; Department of Oral Biology, University of Pittsburgh, United States
| | - Ipsita Banerjee
- Department of Chemical Engineering, University of Pittsburgh, United States; McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States.
| |
Collapse
|
29
|
Formo K, Cho CHH, Vallier L, Strand BL. Culture of hESC-derived pancreatic progenitors in alginate-based scaffolds. J Biomed Mater Res A 2015; 103:3717-26. [PMID: 26014279 DOI: 10.1002/jbm.a.35507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/22/2015] [Accepted: 05/13/2015] [Indexed: 12/15/2022]
Abstract
The effect of alginate-based scaffolds with added basement membrane proteins on the in vitro development of hESC-derived pancreatic progenitors was investigated. Cell clusters were encapsulated in scaffolds containing the basement membrane proteins collagen IV, laminin, fibronectin, or extracellular matrix-derived peptides, and maintained in culture for up to 46 days. The cells remained viable throughout the experiment with no signs of central necrosis. Whereas nonencapsulated cells aggregated into larger clusters, some of which showed signs of morphological changes and tissue organization, the alginate matrix stabilized the cluster size and displayed more homogeneous cell morphologies, allowing culture for long periods of time. For all conditions tested, a stable or declining expression of insulin and PDX1 and an increase in glucagon and somatostatin over time indicated a progressive reduction in beta cell-related gene expression. Alginate scaffolds can provide a chemically defined, xeno-free and easily scalable alternative for culture of pancreatic progenitors. Although no increase in insulin and PDX1 gene expression after alginate-immobilized cell culture was seen in this study, further optimization of the matrix physicochemical and biological properties and of the medium composition may still be a relevant strategy to promote the stabilization or maturation of stem cell-derived beta cells.
Collapse
Affiliation(s)
- Kjetil Formo
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Candy H-H Cho
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ludovic Vallier
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Berit L Strand
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norwegian Regional Health Authority, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
30
|
|
31
|
Zhu H, Yu L, He Y, Lyu Y, Wang B. Microencapsulated Pig Islet Xenotransplantation as an Alternative Treatment of Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:474-89. [PMID: 26028249 DOI: 10.1089/ten.teb.2014.0499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haitao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Heart Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yayi He
- Department of Endocrinology, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Westhrin M, Xie M, Olderøy MØ, Sikorski P, Strand BL, Standal T. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices. PLoS One 2015; 10:e0120374. [PMID: 25769043 PMCID: PMC4358956 DOI: 10.1371/journal.pone.0120374] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/22/2015] [Indexed: 01/04/2023] Open
Abstract
Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.
Collapse
Affiliation(s)
- Marita Westhrin
- Kristian Gerhard Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Minli Xie
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magnus Ø. Olderøy
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Berit L. Strand
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Kristian Gerhard Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
33
|
Zeyland J, Lipiński D, Słomski R. The current state of xenotransplantation. J Appl Genet 2014; 56:211-8. [PMID: 25487710 PMCID: PMC4412840 DOI: 10.1007/s13353-014-0261-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/29/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022]
Abstract
Pigs as a source of grafts for xenotransplantation can help to overcome the rapidly growing shortage of human donors. However, in the case of pig-to-human transplantation, the antibody-xenoantigen complexes lead to the complement activation and immediate hyperacute rejection. Methods eliminating hyperacute rejection (HAR) include α1,3-galactosyltransferase (GGTA1) inactivation, regulation of the complement system and modification of the oligosaccharide structure of surface proteins. The humoral immune response control and reduction of the risk of coagulation disorders are the priority tasks in attempts to overcome acute humoral xenograft rejection that may occur after the elimination of HAR. The primary targets for research are connected with the identification of obstacles and development of strategies to tackle them. Because of the magnitude of factors involved in the immune, genetic engineers face a serious problem of producing multitransgenic animals in the shortest possible time.
Collapse
Affiliation(s)
- J Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Dojazd 11, 60-632, Poland,
| | | | | |
Collapse
|
34
|
Li S, Zhang Y, Chen L, Li N, Xie H, Guo X, Zhao S, Yu W, Lv Y, Lv G, Wu H, Ma X. The relationship between the inflammatory response and cell adhesion on alginate-chitosan-alginate microcapsules after transplantation. J Biomed Mater Res A 2014; 103:2333-43. [PMID: 25394561 DOI: 10.1002/jbm.a.35369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/20/2014] [Accepted: 11/12/2014] [Indexed: 11/06/2022]
Abstract
Cell microencapsulation technology is a potential alternative therapy, but cell overgrowth and adhesion on the microcapsules after transplantation shortens their time of therapeutic efficacy. Inflammatory cells were the main cells that adhered to the microcapsules, so understanding the body's inflammatory processes would help to better identify the mechanisms of cell adhesion to the outer surface of the microcapsules. Our study measured the inflammatory cells and the cytokines and characterized the associated changes in the alginate-chitosan-alginate (ACA) microcapsules 1, 7, 14, and 28 days after implantation in the peritoneal cavity. Then the relationship between the inflammatory response and cell adhesion on the microcapsules was evaluated by multiple regression analysis. The results showed that the microcapsules did not evoke a systemic inflammatory response, but initiated a local inflammatory response in the peritoneal cavity. Furthermore, the correlation analysis showed that the level of cell adhesion on the microcapsules was related to the number of lymphocytes and macrophages, and the amount of IL-6, IL-10, and MCP-1 in the peritoneal cavity. Our results may provide a foundation for reducing the immune response to these microcapsules, prolonging graft survival and improving the efficacy of these treatments.
Collapse
Affiliation(s)
- Shen Li
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116044, China.,Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ying Zhang
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Li Chen
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Na Li
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Hongguo Xie
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xin Guo
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Shan Zhao
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Weiting Yu
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yan Lv
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Guojun Lv
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116044, China.,School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Xiaojun Ma
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
35
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
36
|
Nourmohammadzadeh M, Lo JF, Bochenek M, Mendoza-Elias JE, Wang Q, Li Z, Zeng L, Qi M, Eddington DT, Oberholzer J, Wang Y. Microfluidic array with integrated oxygenation control for real-time live-cell imaging: effect of hypoxia on physiology of microencapsulated pancreatic islets. Anal Chem 2013; 85:11240-9. [PMID: 24083835 DOI: 10.1021/ac401297v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this article, we present a novel microfluidic islet array based on a hydrodynamic trapping principle. The lab-on-a-chip studies with live-cell multiparametric imaging allow understanding of physiological and pathophysiological changes of microencapsulated islets under hypoxic conditions. Using this microfluidic array and imaging analysis techniques, we demonstrate that hypoxia impairs the function of microencapsulated islets at the single islet level, showing a heterogeneous pattern reflected in intracellular calcium signaling, mitochondrial energetic, and redox activity. Our approach demonstrates an improvement over conventional hypoxia chambers that is able to rapidly equilibrate to true hypoxia levels through the integration of dynamic oxygenation. This work demonstrates the feasibility of array-based cellular analysis and opens up new modality to conduct informative analysis and cell-based screening for microencapsulated pancreatic islets.
Collapse
Affiliation(s)
- Mohammad Nourmohammadzadeh
- Department of Surgery/Transplant, University of Illinois at Chicago , 840 South Wood Street, Room 502, Chicago, Illinois 60612
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
It has been known for decades that encapsulation can protect transplanted islets from immune destruction in rodents, but it has proved difficult to extend this success to large animals and humans. A new study in this issue by Jacobs-Tulleneers-Thevissen et al (doi: 10.1007/s00125-013-2906-0 ) advances the field by showing that human islets contained in alginate capsules can function very well, not only in the peritoneal cavity of mice, but also in a human with type 1 diabetes. Many obstacles must still be overcome, but this technology has the potential to safely protect transplanted beta cells from autoimmunity and allorejection.
Collapse
Affiliation(s)
- G C Weir
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
38
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, January-February 2013. Xenotransplantation 2013; 20:131-4. [PMID: 23551807 DOI: 10.1111/xen.12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Mårten K J Schneider
- Division of Internal Medicine, Laboratory of Vascular Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland.
| | | |
Collapse
|
39
|
Hals IK, Rokstad AM, Strand BL, Oberholzer J, Grill V. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. J Diabetes Res 2013; 2013:374925. [PMID: 24364039 PMCID: PMC3864170 DOI: 10.1155/2013/374925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/08/2013] [Indexed: 01/06/2023] Open
Abstract
Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1-0.3% O2 for 8 h, followed by reoxygenation) on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8 ± 3.5% in encapsulated and 42.9 ± 5.2% in nonencapsulated islets (P < 0.2). Nonencapsulated islets released 37.7% (median) more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P < 0.001). Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0 ± 6.1% versus 24.8 ± 5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation.
Collapse
Affiliation(s)
- I. K. Hals
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
- *I. K. Hals:
| | - A. M. Rokstad
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
| | - B. L. Strand
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
- Department of Biotechnology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - J. Oberholzer
- Department of Surgery, University of Illinois, IL at Chicago, Chicago, IL 60612, USA
| | - V. Grill
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Postbox 3250, 7006 Trondheim, Norway
| |
Collapse
|