1
|
Thammarakcharoen F, Srion A, Suvannapruk W, Chokevivat W, Limtrakarn W, Suwanprateeb J. Process Development for Fabricating 3D-Printed Polycaprolactone-Infiltrated Hydroxyapatite Bone Graft Granules: Effects of Infiltrated Solution Concentration and Agitating Liquid. Biomedicines 2024; 12:2161. [PMID: 39335674 PMCID: PMC11429199 DOI: 10.3390/biomedicines12092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Bone grafts are commonly used in orthopedic and dental surgeries to facilitate bone repair and regeneration. A new type of bone graft, polycaprolactone-infiltrated three dimensionally printed hydroxyapatite (3DP HA/PCL), was previously developed by infiltrating polycaprolactone (PCL) into preformed three-dimensional-printed hydroxyapatite (3DP HA) that was fabricated using binder jetting technology combined with a low-temperature phase transformation process. However, when producing small granules, which are often used for bone grafting, issues of granule agglomeration emerged, complicating the application of this method. This study aimed to develop a fabrication process for 3DP HA/PCL bone graft granules using solution infiltration and liquid agitation. The effects of varying PCL solution concentrations (40% and 50% w/w) and different agitating liquids (deionized water or DI, N-Methyl-2-Pyrrolidone or NMP, and an NMP-DI mixture) on the properties of the resulting composites were investigated. XRD and FTIR analysis confirmed the coexistence of HA and PCL within the composites. The final PCL content was comparable across all conditions. The contact angles of 3DP HA/PCL were 26.3 and 69.8 degree for 40% and 50% PCL solution, respectively, when using DI, but were zero when using NMP and NMP-DI. The highest compression load resistance and diametral tensile strength were achieved using the 50% PCL solution with DI or the NMP-DI mixture. DI resulted in a dense PCL coating, while NMP and the NMP-DI mixture produced a porous and irregular surface morphology. All samples exhibited a porous internal microstructure due to PCL infiltration into the initial pores of the 3D-printed HA. Biocompatibility tests showed that all samples supported the proliferation of MC3T3-E1 cells, with the greatest OD values observed for the 50% PCL solution with DI or the NMP-DI mixture at each cultured period. Considering the microstructural, mechanical, and biological properties, the 50% PCL solution with the NMP-DI mixture demonstrated overall desirable properties.
Collapse
Affiliation(s)
- Faungchat Thammarakcharoen
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Autcharaporn Srion
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Waraporn Suvannapruk
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Watchara Chokevivat
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wiroj Limtrakarn
- Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Thammasat University Center of Excellence in Computational Mechanics and Medical Engineering, Thammasat University, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jintamai Suwanprateeb
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Thammasat University Center of Excellence in Computational Mechanics and Medical Engineering, Thammasat University, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Kesäniemi J, Lavrinienko A, Tukalenko E, Mappes T, Watts PC, Jurvansuu J. Infection Load and Prevalence of Novel Viruses Identified from the Bank Vole Do Not Associate with Exposure to Environmental Radioactivity. Viruses 2019; 12:E44. [PMID: 31905955 PMCID: PMC7019477 DOI: 10.3390/v12010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Bank voles (Myodes glareolus) are host to many zoonotic viruses. As bank voles inhabiting areas contaminated by radionuclides show signs of immunosuppression, resistance to apoptosis, and elevated DNA repair activity, we predicted an association between virome composition and exposure to radionuclides. To test this hypothesis, we studied the bank vole virome in samples of plasma derived from animals inhabiting areas of Ukraine (contaminated areas surrounding the former nuclear power plant at Chernobyl, and uncontaminated areas close to Kyiv) that differed in level of environmental radiation contamination. We discovered four strains of hepacivirus and four new virus sequences: two adeno-associated viruses, an arterivirus, and a mosavirus. However, viral prevalence and viral load, and the ability to cause a systemic infection, was not dependent on the level of environmental radiation.
Collapse
Affiliation(s)
- Jenni Kesäniemi
- Finland Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland;
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland; (A.L.); (T.M.); (P.C.W.)
| | - Eugene Tukalenko
- National Research Center for Radiation Medicine of the National Academy of Medical Science, 02000 Kyiv, Ukraine;
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland; (A.L.); (T.M.); (P.C.W.)
| | - Phillip C. Watts
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland; (A.L.); (T.M.); (P.C.W.)
| | - Jaana Jurvansuu
- Finland Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland;
| |
Collapse
|
3
|
Huangfu C, Ma Y, Jia J, Lv M, Zhu F, Ma X, Zhao X, Zhang J. Virus inactivation by 25 kGy gamma irradiation during a new manufacturing process of α2-macroglobulin. Transfus Med 2017; 27:309-311. [DOI: 10.1111/tme.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/01/2016] [Accepted: 03/17/2017] [Indexed: 11/29/2022]
Affiliation(s)
- C. Huangfu
- Beijing key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine; Beijing China
| | - Y. Ma
- Beijing key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine; Beijing China
| | - J. Jia
- Beijing key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine; Beijing China
| | - M. Lv
- Beijing key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine; Beijing China
| | - F. Zhu
- Beijing key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine; Beijing China
| | - X. Ma
- Hualan Biological Engineering Inc; Xinxiang China
| | - X. Zhao
- Beijing key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine; Beijing China
| | - J. Zhang
- Beijing key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine; Beijing China
| |
Collapse
|
4
|
Lee KI, Lee JS, Lee KS, Jung HH, Ahn CM, Kim YS, Shim YB, Jang JW. Mechanical-chemical analyses and sub-chronic systemic toxicity of chemical treated organic bovine bone. Regul Toxicol Pharmacol 2015; 73:747-53. [PMID: 26529390 DOI: 10.1016/j.yrtph.2015.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Abstract
Sequentially chemical-treated bovine bone was not only evaluated by mechanical and chemical analyses but also implanted into the gluteal muscles of rats for 12 weeks to investigate potential local pathological effects and systemic toxicities. The test (chemical treated bone) and control (heat treated bone) materials were compared using scanning electron microscope (SEM), x-ray diffraction pattern, inductively coupled plasma analysis, and bending strength test. In the SEM images, the micro-porous structure of heat-treated bone was changed to sintered ceramic-like structure. The structure of bone mineral from test and control materials was analyzed as100% hydroxyapatite. The ratio of calcium (Ca) to potassium (P), the main inorganic elements, was same even though the Ca and P percentages of the control material was relatively higher than the test material. No death or critical symptoms arose from implantation of the test (chemical treated bone) and control (physiological saline) materials during 12 weeks. The implanted sites were macroscopically examined, with all the groups showing non-irritant results. Our results indicate that chemical processed bovine bone has a better mechanical property than the heat treated bone and the implantation of this material does not produce systemic or pathological toxicity.
Collapse
Affiliation(s)
- Kwang-il Lee
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Republic of Korea.
| | - Jung-soo Lee
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Republic of Korea
| | - Keun-soo Lee
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Republic of Korea
| | - Hong-hee Jung
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Republic of Korea
| | - Chan-min Ahn
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Republic of Korea
| | - Young-sik Kim
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Republic of Korea
| | - Young-bock Shim
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Republic of Korea
| | - Ju-woong Jang
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|