1
|
Denner J. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021; 13:v13112156. [PMID: 34834962 PMCID: PMC8625113 DOI: 10.3390/v13112156] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic.
Collapse
Affiliation(s)
- Joachim Denner
- Department of Veterinary Medicine, Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Porcine islets represent a potentially attractive beta-cell source for xenotransplantation into patients with type 1 diabetes, who are not eligible to islet allo-transplantation due to a lack of suitable human donor organs. Recent progress in genetic engineering/gene editing of donor pigs provides new opportunities to overcome rejection of xeno-islets, to improve their engraftment and insulin secretion capacity, and to reduce the risk for transmission of porcine endogenous retroviruses. This review summarizes the current issues and progress in islet xenotransplantation with special emphasis on genetically modified/gene edited donor pigs. RECENT FINDINGS Attempts to overcome acute rejection of xeno-islets, especially after intraportal transplantation into the liver, include the genetic elimination of specific carbohydrate antigens such as αGal, Neu5Gc, and Sd(a) for which humans and-in part-non-human primates have natural antibodies that bind to these targets leading to activation of complement and coagulation. A complementary approach is the expression of one or more human complement regulatory proteins (hCD46, hCD55, hCD59). Transgenic attempts to overcome cellular rejection of islet xenotransplants include the expression of proteins that inhibit co-stimulation of T cells. Expression of glucagon-like peptide-1 and M3 muscarinic receptors has been shown to increase the insulin secretion of virally transduced porcine islets in vitro and it will be interesting to see the effects of these modifications in transgenic pigs and islet products derived from them. Genome-wide inactivation of porcine endogenous retrovirus (PERV) integrants by mutating their pol genes using CRISPR/Cas9 is a recent approach to reduce the risk for PERV transmission by xeno-islets. Genetic engineering/gene editing of xeno-islet donor pigs facilitated major progress towards clinical islet xenotransplantation. The required set of genetic modifications will depend on the source of islets (fetal/neonatal vs. adult), the mode of delivery (encapsulated vs. free), and the transplantation site.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Joachim Denner
- Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Eckhard Wolf
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
3
|
Oh BJ, Jin SM, Hwang Y, Choi JM, Lee HS, Kim G, Kim G, Park HJ, Kim P, Kim SJ, Kim JH. Highly Angiogenic, Nonthrombogenic Bone Marrow Mononuclear Cell-Derived Spheroids in Intraportal Islet Transplantation. Diabetes 2018; 67:473-485. [PMID: 29298810 DOI: 10.2337/db17-0705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/24/2017] [Indexed: 11/13/2022]
Abstract
Highly angiogenic bone marrow mononuclear cell-derived spheroids (BM-spheroids), formed by selective proliferation of the CD31+CD14+CD34+ monocyte subset via three-dimensional (3D) culture, have had robust angiogenetic capacity in rodent syngeneic renal subcapsular islet transplantation. We wondered whether the efficacy of BM-spheroids could be demonstrated in clinically relevant intraportal islet transplantation models without increasing the risk of portal thrombosis. The thrombogenic potential of intraportally infused BM-spheroids was compared with that of mesenchymal stem cells (MSCs) and MSC-derived spheroids (MSC-spheroids). The angiogenic efficacy and persistence in portal sinusoids of BM-spheroids were examined in rodent syngeneic and primate allogeneic intraportal islet transplantation models. In contrast to MSCs and MSC-spheroids, intraportal infusion of BM-spheroids did not evoke portal thrombosis. BM-spheroids had robust angiogenetic capacity in both the rodent and primate intraportal islet transplantation models and improved posttransplant glycemic outcomes. MRI and intravital microscopy findings revealed the persistence of intraportally infused BM-spheroids in portal sinusoids. Intraportal cotransplantation of allogeneic islets with autologous BM-spheroids in nonhuman primates further confirmed the clinical feasibility of this approach. In conclusion, cotransplantation of BM-spheroids enhances intraportal islet transplantation outcome without portal thrombosis in mice and nonhuman primates. Generating BM-spheroids by 3D culture prevented the rapid migration and disappearance of intraportally infused therapeutic cells.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Bone Marrow Transplantation/adverse effects
- Cell Tracking
- Cells, Cultured
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/immunology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/transplantation
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Macaca fascicularis
- Male
- Mesenchymal Stem Cell Transplantation/adverse effects
- Mice, Inbred C57BL
- Mice, Transgenic
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Portal Vein
- Spheroids, Cellular/cytology
- Spheroids, Cellular/immunology
- Spheroids, Cellular/transplantation
- Streptozocin
- Thrombosis/etiology
- Thrombosis/immunology
- Thrombosis/pathology
- Thrombosis/prevention & control
- Transplantation, Heterotopic/adverse effects
- Transplantation, Isogeneic/adverse effects
Collapse
Affiliation(s)
- Bae Jun Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin Myung Choi
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Han-Sin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Geunsoo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyo Jun Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| |
Collapse
|
4
|
Denner J, Tönjes RR, Takeuchi Y, Fishman J, Scobie L. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes-Chapter 5: recipient monitoring and response plan for preventing disease trans. Xenotransplantation 2016; 23:53-9. [DOI: 10.1111/xen.12227] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Yasu Takeuchi
- Division of Infection and Immunity; University College; London UK
| | - Jay Fishman
- Infectious Disease Division; Massachusetts General Hospital; Boston MA USA
| | | |
Collapse
|
5
|
Regulatory aspects of clinical xenotransplantation. Int J Surg 2015; 23:312-321. [DOI: 10.1016/j.ijsu.2015.09.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/29/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023]
|
6
|
Denner J, Mueller NJ. Preventing transfer of infectious agents. Int J Surg 2015; 23:306-311. [PMID: 26316157 PMCID: PMC7185644 DOI: 10.1016/j.ijsu.2015.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022]
Abstract
Xenotransplantation using pig cells, tissues and organs may be associated with the transfer of porcine infectious agents, which may infect the human recipient and in the worst case induce a disease (zoonosis). To prevent this, a broad screening program of the donor animals for putative zoonotic microorganisms, including bacteria, viruses, fungi and others, using sensitive and specific detection methods has to be performed. As long as it is still unknown, which microorganism represents a real risk for the recipient, experience from allotransplantation should be brought in. Due to the fact that pigs can be screened long before the date of transplantation, xenotransplantation will become eventually safer compared with allotransplantation. Screening and selection of animals free of potential zoonotic microorganisms, Caesarean section, vaccination and/or treatment with chemotherapeutics are the strategies of choice to obtain donor animals not transmitting microorganisms. In the case of porcine endogenous retroviruses (PERVs) which are integrated in the genome of all pigs and which cannot be eliminated this way, selection of animals with low virus expression and generation of genetically modified pigs suppressing PERV expressions may be performed.
Collapse
Affiliation(s)
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| |
Collapse
|
7
|
Burlak C, Mueller KR, Beaton BP. Xenotransplantation literature update, May-June 2015. Xenotransplantation 2015; 22:325-7. [PMID: 26179327 DOI: 10.1111/xen.12181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Kate R Mueller
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Benjamin P Beaton
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
8
|
Ludwig B, Ludwig S. Transplantable bioartificial pancreas devices: current status and future prospects. Langenbecks Arch Surg 2015; 400:531-40. [DOI: 10.1007/s00423-015-1314-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 02/08/2023]
|
9
|
Plotzki E, Wolf-van Buerck L, Knauf Y, Becker T, Maetz-Rensing K, Schuster M, Baehr A, Klymiuk N, Wolf E, Seissler J, Denner J. Virus safety of islet cell transplantation from transgenic pigs to marmosets. Virus Res 2015; 204:95-102. [PMID: 25956348 DOI: 10.1016/j.virusres.2015.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
Transplantation of pig islet cells for the treatment of diabetes may be a more effective approach compared with the application of insulin. However, before introduction into the clinic, efficacy and safety of this treatment have to be shown. Non-human primate models may be used for this, despite the fact that they are characterised by several limitations. Here we investigate the prevalence of porcine endogenous retroviruses (PERVs), which are present in the genome of all pigs and which may infect human cells, as well as of porcine herpes viruses in donor pigs and their potential transmission to non-human primate recipients. Despite the fact that all three subtypes of PERV were present in all and porcine cytomegalovirus (PCMV) was found in some of the pigs, neither PERVs nor PCMV were found in the recipient animals under the experimental conditions applied. Porcine lymphotropic herpes viruses (PLHV) were not found in the donor pigs, hepatitis E virus (HEV) was not found in the recipients.
Collapse
Affiliation(s)
- Elena Plotzki
- Robert Koch Institute, HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany.
| | - Lelia Wolf-van Buerck
- Medizinische Klinik und Poliklinik IV, Diabeteszentrum, Ludwig-Maximilians-Universität, München, Ziemssenstraße 1, 80336 München, Germany.
| | - Yvonne Knauf
- German Primate Center, Leibniz-Institute, Pathology Unit, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Tamara Becker
- German Primate Center, Leibniz-Institute, Pathology Unit, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Kerstin Maetz-Rensing
- German Primate Center, Leibniz-Institute, Pathology Unit, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Marion Schuster
- Medizinische Klinik und Poliklinik IV, Diabeteszentrum, Ludwig-Maximilians-Universität, München, Ziemssenstraße 1, 80336 München, Germany.
| | - Andrea Baehr
- Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Hackerstraße 27, 85764 Oberschleißheim, Germany.
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Hackerstraße 27, 85764 Oberschleißheim, Germany.
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Hackerstraße 27, 85764 Oberschleißheim, Germany.
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Diabeteszentrum, Ludwig-Maximilians-Universität, München, Ziemssenstraße 1, 80336 München, Germany.
| | - Joachim Denner
- Robert Koch Institute, HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|