1
|
Chen QD, Liu L, Zhao XH, Liang JB, Li SW. Challenges and opportunities in the islet transplantation microenvironment: a comprehensive summary of inflammatory cytokine, immune cells, and vascular endothelial cells. Front Immunol 2023; 14:1293762. [PMID: 38111575 PMCID: PMC10725940 DOI: 10.3389/fimmu.2023.1293762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
It is now understood that islet transplantation serves as a β-cell replacement therapy for type 1 diabetes. Many factors impact the survival of transplanted islets, especially those related to the microenvironment. This review explored microenvironmental components, including vascular endothelial cells, inflammatory cytokines, and immune cells, and their profound effects on post-islet transplantation survival rates. Furthermore, it revealed therapeutic strategies aimed at targeting these elements. Current evidence suggests that vascular endothelial cells are pivotal in facilitating vascularization and nutrient supply and establishing a new microcirculation network for transplanted islets. Consequently, preserving the functionality of vascular endothelial cells emerges as a crucial strategy to enhance the survival of islet transplantation. Release of cytokines will lead to activation of immune cells and production and release of further cytokines. While immune cells hold undeniable significance in regulating immune responses, their activation can result in rejection reactions. Thus, establishing immunological tolerance within the recipient's body is essential for sustaining graft functionality. Indeed, future research endeavors should be directed toward developing precise strategies for modulating the microenvironment to achieve higher survival rates and more sustained transplantation outcomes. While acknowledging certain limitations inherent to this review, it provides valuable insights that can guide further exploration in the field of islet transplantation. In conclusion, the microenvironment plays a paramount role in islet transplantation. Importantly, we discuss novel perspectives that could lead to broader clinical applications and improved patient outcomes in islet transplantation.
Collapse
Affiliation(s)
- Qi-dong Chen
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University , Taizhou, Zhejiang, China
| | - Jun-bo Liang
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
2
|
Maraldi T, Russo V. Amniotic Fluid and Placental Membranes as Sources of Stem Cells: Progress and Challenges 2.0. Int J Mol Sci 2023; 24:16020. [PMID: 38003210 PMCID: PMC10671515 DOI: 10.3390/ijms242216020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of the second edition of this Special Issue was to collect both review and original research articles that investigate and elucidate the possible therapeutic role of perinatal stem cells in pathological conditions, such as cardiovascular and metabolic diseases, as well as inflammatory, autoimmune, musculoskeletal, and degenerative diseases [...].
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy
| | - Valentina Russo
- Faculty of Bioscience and Agro-Food and Environmental Technology, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
3
|
Perinatal Stem Cell Therapy to Treat Type 1 Diabetes Mellitus: A Never-Say-Die Story of Differentiation and Immunomodulation. Int J Mol Sci 2022; 23:ijms232314597. [PMID: 36498923 PMCID: PMC9738084 DOI: 10.3390/ijms232314597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.
Collapse
|
4
|
Paget MB, Murray HE, Bailey CJ, Downing R. From insulin injections to islet transplantation: An overview of the journey. Diabetes Obes Metab 2022; 24 Suppl 1:5-16. [PMID: 34431589 DOI: 10.1111/dom.14526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
When, in 1869, Paul Langerhans detected the "islands of tissue" in the pancreas, he took the first step on a journey towards islet transplantation as a treatment for type 1 diabetes. The route has embraced developments across biosciences, surgery, gene therapy and clinical research. This review highlights major milestones along that journey involving whole pancreas transplantation, islet transplantation, the creation of surrogate insulin-secreting cells and novel islet-like structures using genetic and bio-engineering technologies. To obviate the paucity of human tissue, pluripotent stem cells and non-β-cells within the pancreas have been modified to create physiologically responsive insulin-secreting cells. Before implantation, these can be co-cultured with endothelial cells to promote vascularisation and with immune defence cells such as placental amnion cells to reduce immune rejection. Scaffolds to contain grafts and facilitate surgical placement provide further opportunities to achieve physiological insulin delivery. Alternatively, xenotransplants such as porcine islets might be reconsidered as opportunities exist to circumvent safety concerns and immune rejection. Thus, despite a long and arduous journey, the prospects for increased use of tissue transplantation to provide physiological insulin replacement are drawing ever closer.
Collapse
Affiliation(s)
- Michelle B Paget
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Hilary E Murray
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | | | - Richard Downing
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
5
|
Wassmer CH, Bellofatto K, Perez L, Lavallard V, Cottet-Dumoulin D, Ljubicic S, Parnaud G, Bosco D, Berishvili E, Lebreton F. Engineering of Primary Pancreatic Islet Cell Spheroids for Three-dimensional Culture or Transplantation: A Methodological Comparative Study. Cell Transplant 2021; 29:963689720937292. [PMID: 32749168 PMCID: PMC7563811 DOI: 10.1177/0963689720937292] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) cell culture by engineering spheroids has gained increasing attention in recent years because of the potential advantages of such systems over conventional two-dimensional (2D) tissue culture. Benefits include the ability of 3D to provide a more physiologically relevant environment, for the generation of uniform, size-controlled spheroids with organ-like microarchitecture and morphology. In recent years, different techniques have been described for the generation of cellular spheroids. Here, we have compared the efficiency of four different methods of islet cell aggregation. Rat pancreatic islets were dissociated into single cells before reaggregation. Spheroids were generated either by (i) self-aggregation in nonadherent petri dishes, (ii) in 3D hanging drop culture, (iii) in agarose microwell plates or (iv) using the Sphericalplate 5D™. Generated spheroids consisted of 250 cells, except for the self-aggregation method, where the number of cells per spheroid cannot be controlled. Cell function and morphology were assessed by glucose stimulated insulin secretion (GSIS) test and histology, respectively. The quantity of material, labor intensity, and time necessary for spheroid production were compared between the different techniques. Results were also compared with native islets. Native islets and self-aggregated spheroids showed an important heterogeneity in terms of size and shape and were larger than spheroids generated with the other methods. Spheroids generated in hanging drops, in the Sphericalplate 5D™, and in agarose microwell plates were homogeneous, with well-defined round shape and a mean diameter of 90 µm. GSIS results showed improved insulin secretion in response to glucose in comparison with native islets and self-aggregated spheroids. Spheroids can be generated using different techniques and each of them present advantages and inconveniences. For islet cell aggregation, we recommend, based on our results, to use the hanging drop technique, the agarose microwell plates, or the Sphericalplate 5D™ depending on the experiments, the latter being the only option available for large-scale spheroids production.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Lisa Perez
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Sanda Ljubicic
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.,Both the authors contributed equally to this article and share senior authorship
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Both the authors contributed equally to this article and share senior authorship
| |
Collapse
|
6
|
Jiang LL, Li H, Liu L. Xenogeneic stem cell transplantation: Research progress and clinical prospects. World J Clin Cases 2021; 9:3826-3837. [PMID: 34141739 PMCID: PMC8180210 DOI: 10.12998/wjcc.v9.i16.3826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation is the ultimate treatment for end-stage diseases such as heart and liver failure. However, the severe shortage of donor organs has limited the organ transplantation progress. Xenogeneic stem cell transplantation provides a new strategy to solve this problem. Researchers have shown that xenogeneic stem cell transplantation has significant therapeutic effects and broad application prospects in treating liver failure, myocardial infarction, advanced type 1 diabetes mellitus, myelosuppression, and other end-stage diseases by replacing the dysfunctional cells directly or improving the endogenous regenerative milieu. In this review, the sources, problems and solutions, and potential clinical applications of xenogeneic stem cell transplantation will be discussed.
Collapse
Affiliation(s)
- Lin-Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hui Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
7
|
Murray HE, Zafar A, Qureshi KM, Paget MB, Bailey CJ, Downing R. The potential role of multifunctional human amniotic epithelial cells in pancreatic islet transplantation. J Tissue Eng Regen Med 2021; 15:599-611. [PMID: 34216434 DOI: 10.1002/term.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Pancreatic islet cell transplantation has proven efficacy as a treatment for type 1 diabetes mellitus, chiefly in individuals who are refractory to conventional insulin replacement therapy. At present its clinical use is restricted, firstly by the limited access to suitable donor organs but also due to factors associated with the current clinical transplant procedure which inadvertently impair the long-term functionality of the islet graft. Of note, the physical, biochemical, inflammatory, and immunological stresses to which islets are subjected, either during pretransplant processing or following implantation are detrimental to their sustained viability, necessitating repeated islet infusions to attain adequate glucose control. Progressive decline in functional beta (β)-cell mass leads to graft failure and the eventual re-instatement of exogenous insulin treatment. Strategies which protect and/or preserve optimal islet function in the peri-transplant period would improve clinical outcomes. Human amniotic epithelial cells (HAEC) exhibit both pluripotency and immune-privilege and are ideally suited for use in replacement and regenerative therapies. The HAEC secretome exhibits trophic, anti-inflammatory, and immunomodulatory properties of relevance to islet graft survival. Facilitated by β-cell supportive 3D cell culture systems, HAEC may be integrated with islets bringing them into close spatial arrangement where they may exert paracrine influences that support β-cell function, reduce hypoxia-induced islet injury, and alter islet alloreactivity. The present review details the potential of multifunctional HAEC in the context of islet transplantation, with a focus on the innate capabilities that may counter adverse events associated with the current clinical transplant protocol to achieve long-term islet graft function.
Collapse
Affiliation(s)
- Hilary E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Ali Zafar
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Khalid M Qureshi
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Michelle B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Clifford J Bailey
- Diabetes Research, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
8
|
Abstract
Abstract
Purpose of Review
β cell replacement via whole pancreas or islet transplantation has greatly evolved for the cure of type 1 diabetes. Both these strategies are however still affected by several limitations. Pancreas bioengineering holds the potential to overcome these hurdles aiming to repair and regenerate β cell compartment. In this review, we detail the state-of-the-art and recent progress in the bioengineering field applied to diabetes research.
Recent Findings
The primary target of pancreatic bioengineering is to manufacture a construct supporting insulin activity in vivo. Scaffold-base technique, 3D bioprinting, macro-devices, insulin-secreting organoids, and pancreas-on-chip represent the most promising technologies for pancreatic bioengineering.
Summary
There are several factors affecting the clinical application of these technologies, and studies reported so far are encouraging but need to be optimized. Nevertheless pancreas bioengineering is evolving very quickly and its combination with stem cell research developments can only accelerate this trend.
Collapse
|
9
|
Akolpoglu MB, Inceoglu Y, Bozuyuk U, Sousa AR, Oliveira MB, Mano JF, Kizilel S. Recent advances in the design of implantable insulin secreting heterocellular islet organoids. Biomaterials 2020; 269:120627. [PMID: 33401104 DOI: 10.1016/j.biomaterials.2020.120627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Islet transplantation has proved one of the most remarkable transmissions from an experimental curiosity into a routine clinical application for the treatment of type I diabetes (T1D). Current efforts for taking this technology one-step further are now focusing on overcoming islet donor shortage, engraftment, prolonged islet availability, post-transplant vascularization, and coming up with new strategies to eliminate lifelong immunosuppression. To this end, insulin secreting 3D cell clusters composed of different types of cells, also referred as heterocellular islet organoids, spheroids, or pseudoislets, have been engineered to overcome the challenges encountered by the current islet transplantation protocols. β-cells or native islets are accompanied by helper cells, also referred to as accessory cells, to generate a cell cluster that is not only able to accurately secrete insulin in response to glucose, but also superior in terms of other key features (e.g. maintaining a vasculature, longer durability in vivo and not necessitating immunosuppression after transplantation). Over the past decade, numerous 3D cell culture techniques have been integrated to create an engineered heterocellular islet organoid that addresses current obstacles. Here, we first discuss the different cell types used to prepare heterocellular organoids for islet transplantation and their contribution to the organoids design. We then introduce various cell culture techniques that are incorporated to prepare a fully functional and insulin secreting organoids with select features. Finally, we discuss the challenges and present a future outlook for improving clinical outcomes of islet transplantation.
Collapse
Affiliation(s)
- M Birgul Akolpoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Yasemin Inceoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ugur Bozuyuk
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
10
|
Lebreton F, Wassmer CH, Belofatto K, Berney T, Berishvili E. [Insulin-secreting organoids: a first step towards the bioartificial pancreas]. Med Sci (Paris) 2020; 36:879-885. [PMID: 33026330 DOI: 10.1051/medsci/2020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pancreatic islet transplantation is a valid cure for selected type-1 diabetic patients. It offers a minimally invasive β-cell replacement approach and has proven its capacity to significantly enhance patients quality of life. However, these insulin-secreting mini-organs suffer from the loss of intrinsic vascularization and extra-cellular matrix occurring during isolation, resulting in hypoxic stress and necrosis. In addition, they have to face inflammatory and immune destruction once transplanted in the liver. Organoid generation represents a strategy to overcome these obstacles by allowing size and shape control as well as composition. It does offer the possibility to add supporting cells such as endothelial cells, in order to facilitate revascularization or cells releasing anti-inflammatory and/or immunomodulatory factors. This review describes the limitations of pancreatic islet transplantation and details the benefits offered by organoids as a cornerstone toward the generation of a bioartificial pancreas.
Collapse
Affiliation(s)
- Fanny Lebreton
- Laboratoire de transplantation cellulaire, Département de Chirurgie, Centre médical universitaire, Hôpitaux de l'université de Genève et université de Genève, Genève, Suisse - Centre facultaire du diabète, Centre médical de l'université de Genève, Genève, Suisse
| | - Charles-Henri Wassmer
- Laboratoire de transplantation cellulaire, Département de Chirurgie, Centre médical universitaire, Hôpitaux de l'université de Genève et université de Genève, Genève, Suisse - Centre facultaire du diabète, Centre médical de l'université de Genève, Genève, Suisse
| | - Kevin Belofatto
- Laboratoire de transplantation cellulaire, Département de Chirurgie, Centre médical universitaire, Hôpitaux de l'université de Genève et université de Genève, Genève, Suisse - Centre facultaire du diabète, Centre médical de l'université de Genève, Genève, Suisse
| | - Thierry Berney
- Laboratoire de transplantation cellulaire, Département de Chirurgie, Centre médical universitaire, Hôpitaux de l'université de Genève et université de Genève, Genève, Suisse - Centre facultaire du diabète, Centre médical de l'université de Genève, Genève, Suisse
| | - Ekaterine Berishvili
- Laboratoire de transplantation cellulaire, Département de Chirurgie, Centre médical universitaire, Hôpitaux de l'université de Genève et université de Genève, Genève, Suisse - Centre facultaire du diabète, Centre médical de l'université de Genève, Genève, Suisse - Institute of Medical Research, Ilia State University, Tbilissi, Géorgie
| |
Collapse
|
11
|
Wassmer CH, Lebreton F, Bellofatto K, Bosco D, Berney T, Berishvili E. Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transpl Int 2020; 33:1577-1588. [PMID: 32852858 PMCID: PMC7756715 DOI: 10.1111/tri.13721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a major health issue of increasing prevalence. ß‐cell replacement, by pancreas or islet transplantation, is the only long‐term curative option for patients with insulin‐dependent diabetes. Despite good functional results, pancreas transplantation remains a major surgery with potentially severe complications. Islet transplantation is a minimally invasive alternative that can widen the indications in view of its lower morbidity. However, the islet isolation procedure disrupts their vasculature and connection to the surrounding extracellular matrix, exposing them to ischemia and anoikis. Implanted islets are also the target of innate and adaptive immune attacks, thus preventing robust engraftment and prolonged full function. Generation of organoids, defined as functional 3D structures assembled with cell types from different sources, is a strategy increasingly used in regenerative medicine for tissue replacement or repair, in a variety of inflammatory or degenerative disorders. Applied to ß‐cell replacement, it offers the possibility to control the size and composition of islet‐like structures (pseudo‐islets), and to include cells with anti‐inflammatory or immunomodulatory properties. In this review, we will present approaches to generate islet cell organoids and discuss how these strategies can be applied to the generation of a bioartificial pancreas for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW During the last decades, the field of regenerative medicine has been rapidly evolving. Major progress has been made in the development of biological substitutes applying the principles of cell transplantation, material science, and bioengineering. RECENT FINDINGS Among other sources, amniotic-derived products have been used for decades in various fields of medicine as a biomaterial for the wound care and tissue replacement. Moreover, human amniotic epithelial and mesenchymal cells have been intensively studied for their immunomodulatory capacities. Amniotic cells possess two major characteristics that have already been widely exploited. The first is their ability to modulate and suppress the innate and adaptive immunities, making them a true asset for chronic inflammatory disorders and for the induction of tolerance in transplantation models. The second is their multilineage differentiation capacity, offering a source of cells for tissue engineering. The latter combined with the use of amniotic membrane as a scaffold offers all components necessary to create an optimal environment for cell and tissue regeneration. This review summarizes beneficial properties of hAM and its derivatives and discusses their potential in regenerative medicine.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
13
|
Lebreton F, Bellofatto K, Wassmer CH, Perez L, Lavallard V, Parnaud G, Cottet-Dumoulin D, Kerr-Conte J, Pattou F, Bosco D, Othenin-Girard V, Martinez de Tejada B, Berishvili E. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am J Transplant 2020; 20:1551-1561. [PMID: 32031745 DOI: 10.1111/ajt.15812] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/12/2020] [Accepted: 01/28/2020] [Indexed: 01/25/2023]
Abstract
Hypoxia is a major cause of considerable islet loss during the early posttransplant period. Here, we investigate whether shielding islets with human amniotic epithelial cells (hAECs), which possess anti-inflammatory and regenerative properties, improves islet engraftment and survival. Shielded islets were generated on agarose microwells by mixing rat islets (RIs) or human islets (HI) and hAECs (100 hAECs/IEQ). Islet secretory function and viability were assessed after culture in hypoxia (1% O2 ) or normoxia (21% O2 ) in vitro. In vivo function was evaluated after transplant under the kidney capsule of diabetic immunodeficient mice. Graft morphology and vascularization were evaluated by immunohistochemistry. Both shielded RIs and HIs show higher viability and increased glucose-stimulated insulin secretion after exposure to hypoxia in vitro compared with control islets. Transplant of shielded islets results in considerably earlier normoglycemia and vascularization, an enhanced glucose tolerance, and a higher β cell mass. Our results show that hAECs have a clear cytoprotective effect against hypoxic damages in vitro. This strategy improves β cell mass engraftment and islet revascularization, leading to an improved capacity of islets to reverse hyperglycemia, and could be rapidly applicable in the clinical situation seeing that the modification to HIs are minor.
Collapse
Affiliation(s)
- Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Charles H Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lisa Perez
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Julie Kerr-Conte
- INSERM U1190, Translational Research for Diabetes, University of Lille, France
| | - François Pattou
- INSERM U1190, Translational Research for Diabetes, University of Lille, France
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Véronique Othenin-Girard
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
14
|
Forneris N, Levy H, Burlak C. Xenotransplantation literature update, July/August 2019. Xenotransplantation 2019; 26:e12561. [PMID: 31562656 DOI: 10.1111/xen.12561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Nicole Forneris
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Heather Levy
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher Burlak
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|