1
|
Nishida J, Tsuno T, G Yabe S, Kin T, Fukuda S, Takeda F, Shirakawa J, Okochi H. Encapsulated human islets in alginate fiber maintain long-term functionality. Endocr J 2024; 71:253-264. [PMID: 38143085 DOI: 10.1507/endocrj.ej23-0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Maintenance of islet function after in vitro culture is crucial for both transplantation and research. Here we evaluated the effects of encapsulation in alginate fiber on the function of human islets which were distributed by the Alberta Islet Distribution Program. Encapsulated human islets from 15 deceased donors were cultured under 5.5 or 25 mM glucose conditions in vitro. The amounts of C-peptide and glucagon secreted from encapsulated islets into the culture media were measured periodically, and immunohistochemical studies were performed. Encapsulated islets maintained C-peptide and glucagon secretion for more than 75 days in 5 cases; in two cases, their secretion was also successfully detected even on day 180. α- and β-cell composition and β-cell survival in islets were unaltered in the fiber after 75 or 180 days of culture. The encapsulated islets cultured with 5.5 mM glucose, but not those with 25 mM glucose, exhibited glucose responsiveness of C-peptide secretion until day 180. We demonstrate that alginate encapsulation enabled human islets to maintain their viability and glucose responsiveness of C-peptide secretion after long-term in vitro culture, potentially for more than for 180 days.
Collapse
Affiliation(s)
- Junko Nishida
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Takahiro Tsuno
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Shigeharu G Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta Hospital, Edmonton, Alberta T6G2C8, Canada
| | - Satsuki Fukuda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Fujie Takeda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| |
Collapse
|
3
|
Krishnamoorthy S, Schwartz MF, Van den Broeck L, Hunt A, Horn TJ, Sozzani R. Tissue Regeneration with Hydrogel Encapsulation: A Review of Developments in Plants and Animals. BIODESIGN RESEARCH 2021; 2021:9890319. [PMID: 37849953 PMCID: PMC10521718 DOI: 10.34133/2021/9890319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2023] Open
Abstract
Hydrogel encapsulation has been widely utilized in the study of fundamental cellular mechanisms and has been shown to provide a better representation of the complex in vivo microenvironment in natural biological conditions of mammalian cells. In this review, we provide a background into the adoption of hydrogel encapsulation methods in the study of mammalian cells, highlight some key findings that may aid with the adoption of similar methods for the study of plant cells, including the potential challenges and considerations, and discuss key findings of studies that have utilized these methods in plant sciences.
Collapse
Affiliation(s)
- Srikumar Krishnamoorthy
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael F. Schwartz
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Aitch Hunt
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Timothy J. Horn
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Mohammadi MR, Rodriguez SM, Luong JC, Li S, Cao R, Alshetaiwi H, Lau H, Davtyan H, Jones MB, Jafari M, Kessenbrock K, Villalta SA, de Vos P, Zhao W, Lakey JRT. Exosome loaded immunomodulatory biomaterials alleviate local immune response in immunocompetent diabetic mice post islet xenotransplantation. Commun Biol 2021; 4:685. [PMID: 34083739 PMCID: PMC8175379 DOI: 10.1038/s42003-021-02229-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Foreign body response (FBR) to biomaterials compromises the function of implants and leads to medical complications. Here, we report a hybrid alginate microcapsule (AlgXO) that attenuated the immune response after implantation, through releasing exosomes derived from human Umbilical Cord Mesenchymal Stem Cells (XOs). Upon release, XOs suppress the local immune microenvironment, where xenotransplantation of rat islets encapsulated in AlgXO led to >170 days euglycemia in immunocompetent mouse model of Type 1 Diabetes. In vitro analyses revealed that XOs suppressed the proliferation of CD3/CD28 activated splenocytes and CD3+ T cells. Comparing suppressive potency of XOs in purified CD3+ T cells versus splenocytes, we found XOs more profoundly suppressed T cells in the splenocytes co-culture, where a heterogenous cell population is present. XOs also suppressed CD3/CD28 activated human peripheral blood mononuclear cells (PBMCs) and reduced their cytokine secretion including IL-2, IL-6, IL-12p70, IL-22, and TNFα. We further demonstrate that XOs mechanism of action is likely mediated via myeloid cells and XOs suppress both murine and human macrophages partly by interfering with NFκB pathway. We propose that through controlled release of XOs, AlgXO provide a promising new platform that could alleviate the local immune response to implantable biomaterials.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | | | - Jennifer Cam Luong
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Shiri Li
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Rui Cao
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Hien Lau
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
| | - Hayk Davtyan
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - Mathew Blurton Jones
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - S Armando Villalta
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Weian Zhao
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center; Edwards Life Sciences Center for Advanced Cardiovascular Technology; Department of Biomedical Engineering, Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jonathan R T Lakey
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
- Department of Surgery, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Wang JK, Cheam NMJ, Irvine SA, Tan NS, Venkatraman S, Tay CY. Interpenetrating Network of Alginate–Human Adipose Extracellular Matrix Hydrogel for Islet Cells Encapsulation. Macromol Rapid Commun 2020; 41:e2000275. [DOI: 10.1002/marc.202000275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/04/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Kit Wang
- School of Materials Science and Engineering Nanyang Technological University Singapore N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Nicole Mein Ji Cheam
- School of Materials Science and Engineering Nanyang Technological University Singapore N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Scott Alexander Irvine
- School of Materials Science and Engineering Nanyang Technological University Singapore N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Nguan Soon Tan
- School of Biological Sciences Nanyang Technological University Singapore 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 11 Mandalay Road Singapore 308232 Singapore
| | - Subbu Venkatraman
- Department of Materials Science and Engineering National University of Singapore Blk EA, 9 Engineering Drive 1 Singapore 117575 Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering Nanyang Technological University Singapore N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
- School of Biological Sciences Nanyang Technological University Singapore 60 Nanyang Drive Singapore 637551 Singapore
- Environmental Chemistry and Materials Centre Nanyang Environment and Water Research Institute 1 CleanTech Loop, CleanTech One Singapore 637141 Singapore
| |
Collapse
|