1
|
Stewart AG, Fishman JA. Surveillance and prevention of infection in clinical xenotransplantation. Clin Microbiol Rev 2025; 38:e0015023. [PMID: 39887237 PMCID: PMC11905366 DOI: 10.1128/cmr.00150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
SUMMARYXenotransplantation, the transplantation of living organs, tissues, or cells between species, carries the potential to address the global shortage of human organs for patients with end-stage organ failure. Recent advances in genetic engineering have improved prospects for clinical xenotransplantation by reducing immune and inflammatory responses to grafts, controlling coagulation on endothelial surfaces, and modifying viral risks, including the porcine endogenous retrovirus (PERV). Management of infectious risks posed by clinical xenotransplantation requires meticulous attention to the biosecure breeding and microbiological surveillance of source animals and recipients and consideration of novel infection control requirements. Infectious risks in xenotransplantation stem from both known human pathogens in immunosuppressed transplant recipients and from porcine organisms for which the clinical manifestations, microbial assays, and therapies are generally limited. Both known and unknown zoonoses may be transmitted from pigs to humans. Some pig-specific pathogens do not infect human cells but have systemic manifestations when active within the xenograft, including porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), which contributes to graft rejection and consumptive coagulopathy. The role of porcine endogenous retrovirus (PERV) in humans remains uncertain despite the absence of documented transmissions and the availability of swine with inactivated genomic PERV. New technologies, such as metagenomic sequencing and multi-omics approaches, will be essential for detection of novel infections and for understanding interactions between the xenograft, the host's immune system, and potential pathogens. These approaches will allow development of infection control protocols, pathogen surveillance requirements, and tailored antimicrobial therapies to enhance the safety and success of clinical xenotransplantation.
Collapse
Affiliation(s)
- Adam G Stewart
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Gupta S, Sharma A, Rajakannu M, Bisevac J, Rela M, Verma RS. Small Molecule-Mediated Stage-Specific Reprogramming of MSCs to Hepatocyte-Like Cells and Hepatic Tissue for Liver Injury Treatment. Stem Cell Rev Rep 2024; 20:2215-2235. [PMID: 39259445 PMCID: PMC11554881 DOI: 10.1007/s12015-024-10771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Derivation of hepatocytes from stem cells has been established through various protocols involving growth factor (GF) and small molecule (SM) agents, among others. However, mesenchymal stem cell-based derivation of hepatocytes still remains expensive due to the use of a cocktail of growth factors, and a long duration of differentiation is needed, thus limiting its potential clinical application. METHODS In this study, we developed a chemically defined differentiation strategy that is exclusively based on SM and takes 14 days, while the GF-based protocol requires 23-28 days. RESULTS We optimized a stage-specific differentiation protocol for the differentiation of rat bone marrow-derived mesenchymal stem cells (MSCs) into functional hepatocyte-like cells (dHeps) that involved four stages, i.e., definitive endoderm (DE), hepatic competence (HC), hepatic specification (HS) and hepatic differentiation and growth. We further generated hepatic tissue using human decellularized liver extracellular matrix and compared it with hepatic tissue derived from the growth factor-based protocol at the transcriptional level. dHep, upon transplantation in a rat model of acute liver injury (ALI), was capable of ameliorating liver injury in rats and improving liver function and tissue damage compared to those in the ALI model. CONCLUSIONS In summary, this is the first study in which hepatocytes and hepatic tissue were derived from MSCs utilizing a stage-specific strategy by exclusively using SM as a differentiation factor.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
- Centre for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Akriti Sharma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Muthukumarassamy Rajakannu
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chromepet, Tamil Nadu, India
| | - Jovana Bisevac
- Centre for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chromepet, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
3
|
Cooper DKC, Hara H, Pan D, Buhler LH. Hendrik Jan (Henk) Schuurman, MSc, PhD (1950-2024): In Memoriam. Xenotransplantation 2024; 31:e12882. [PMID: 39316652 DOI: 10.1111/xen.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024]
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- The Transplantation Institute at the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Dengke Pan
- Chengdu ClonOrgan Biotechnology Co. Ltd, Chengdu, China
| | - Leo H Buhler
- Department of Surgery, Fribourg Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Groenendaal H, Costard S, Ballard R, Bienhoff S, Challen DC, Dominguez BJ, Kern DR, Miller D, Noordergraaf J, Rudenko L, Schuurman HJ, Spizzo T, Sturos M, Zollers B, Fishman JA. Expert opinion on the identification, risk assessment, and mitigation of microorganisms and parasites relevant to xenotransplantation products from pigs. Xenotransplantation 2023; 30:e12815. [PMID: 37616183 DOI: 10.1111/xen.12815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023]
Abstract
Xenotransplantation has the potential to address shortages of organs available for clinical transplantation, but concerns exist regarding potential risks posed by porcine microorganisms and parasites (MP) to the health of human recipients. In this study, a risk-based framework was developed, and expert opinion was elicited to evaluate porcine MP based on swine exposure and risk to human health. Experts identified 255 MP to include in the risk assessment. These were rated by experts for five criteria regarding potential swine exposure in the USA and human health risks. MP were subsequently categorized into three risk mitigation groups according to pre-defined rules: disqualifying porcine MP (due to their pathogenic potential, n = 130); non-disqualifying porcine MP (still relevant to consider for biosecurity or monitoring efforts, n = 40); and alert/watch list (not reported in the USA or MP not in swine, n = 85). Most disqualifying (n = 126) and non-disqualifying (n = 36) porcine MP can effectively be eliminated with high biosecurity programs. This approach supports surveillance and risk mitigation strategies for porcine MP in swine produced for xenotransplantation, such as documentation of freedom from porcine MP, or use of porcine MP screening, monitoring, or elimination options. To the authors' knowledge, this is the first effort to comprehensively identify all relevant porcine MP systematically and transparently evaluate the risk of infection of both donor animals and immunosuppressed human recipients, and the potential health impacts for immunosuppressed human recipients from infected xenotransplantation products from pigs.
Collapse
Affiliation(s)
| | | | - Reid Ballard
- Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | | - Dan Miller
- Excorp Biomedical International Pte. Ltd., Singapore
| | | | - Larisa Rudenko
- BioPolicy Solutions, LLC, Ventura, California, USA; Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Tom Spizzo
- Spring Point Project, Minneapolis, Minnesota, USA
| | - Matthew Sturos
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, Minnesota, USA
| | - Bill Zollers
- Argenta Clinical US, New Brunswick, New Jersey, USA
| | - Jay A Fishman
- Transplant Center and Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Denner J, Schuurman HJ. Early testing of porcine organ xenotransplantation products in humans: Microbial safety as illustrated for porcine cytomegalovirus. Xenotransplantation 2022; 29:e12783. [PMID: 36336900 DOI: 10.1111/xen.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
Huang J. Expert consensus on clinical trials of human xenotransplantation in China. HEALTH CARE SCIENCE 2022; 1:7-10. [PMID: 38939355 PMCID: PMC11080631 DOI: 10.1002/hcs2.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 06/15/2022] [Indexed: 06/29/2024]
Abstract
The history of xenotransplantation started in the 19th century. After a few decades of investigation, significant breakthroughs and preclinical milestones have been achieved worldwide. With the recent transplantation of genetically modified porcine kidneys and heart into humans, these ground-breaking achievements have attracted great attention worldwide, in the hope that xenotransplantation might alleviate or even solve the problem of organ shortage. On January 20, 2022, the China Organ Transplantation Development Foundation convened a symposium on "The History, Current Situation and Future of Human Xenotransplantation Clinical Trials," where ways to promote the ethical and sustainable development of xenotransplantation in China were discussed among the participating experts. A formal consensus was reached as the product of the symposium, outlining the expert opinions on scientific, regulatory, and ethical issues of clinical trials of xenotransplantation in China.
Collapse
Affiliation(s)
- Jiefu Huang
- China Organ Transplantation Development FoundationBeijingChina
| | | |
Collapse
|
7
|
Entwistle JW, Sade RM, Drake DH. Clinical xenotransplantation seems close: Ethical issues persist. Artif Organs 2022; 46:987-994. [PMID: 35451522 DOI: 10.1111/aor.14255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 01/25/2023]
Abstract
Scientific barriers that have prevented successful xenotransplantation are being breached, yet many ethical issues remain. Some are broad issues that accompany the adoption of novel and expensive technologies, and some are unique to xenotransplantation. Major ethical questions include areas such as: viral transmission; zoonoses and lifetime surveillance; interfering with nature; efficacy, access, and expense; treatment of animals; regulation and oversight.
Collapse
Affiliation(s)
- John W Entwistle
- Department of Surgery, Division of Cardiothoracic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert M Sade
- Department of Surgery, Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Daniel H Drake
- Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Cross-Najafi AA, Lopez K, Isidan A, Park Y, Zhang W, Li P, Yilmaz S, Akbulut S, Ekser B. Current Barriers to Clinical Liver Xenotransplantation. Front Immunol 2022; 13:827535. [PMID: 35281047 PMCID: PMC8904558 DOI: 10.3389/fimmu.2022.827535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Preclinical trials of pig-to-nonhuman primate liver xenotransplantation have recently achieved longer survival times. However, life-threatening thrombocytopenia and coagulation dysregulation continue to limit preclinical liver xenograft survival times to less than one month despite various genetic modifications in pigs and intensive pharmacological support. Transfusion of human coagulation factors and complex immunosuppressive regimens have resulted in substantial improvements in recipient survival. The fundamental biological mechanisms of thrombocytopenia and coagulation dysregulation remain incompletely understood. Current studies demonstrate that porcine von Willebrand Factor binds more tightly to human platelet GPIb receptors due to increased O-linked glycosylation, resulting in increased human platelet activation. Porcine liver sinusoidal endothelial cells and Kupffer cells phagocytose human platelets in an asialoglycoprotein receptor 1-dependent and CD40/CD154-dependent manner, respectively. Porcine Kupffer cells phagocytose human platelets via a species-incompatible SIRPα/CD47 axis. Key drivers of coagulation dysregulation include constitutive activation of the extrinsic clotting cascade due to failure of porcine tissue factor pathway inhibitor to repress recipient tissue factor. Additionally, porcine thrombomodulin fails to activate human protein C when bound by human thrombin, leading to a hypercoagulable state. Combined genetic modification of these key genes may mitigate liver xenotransplantation-induced thrombocytopenia and coagulation dysregulation, leading to greater recipient survival in pig-to-nonhuman primate liver xenotransplantation and, potentially, the first pig-to-human clinical trial.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Dias ML, Paranhos BA, Goldenberg RCDS. Liver scaffolds obtained by decellularization: A transplant perspective in liver bioengineering. J Tissue Eng 2022; 13:20417314221105305. [PMID: 35756167 PMCID: PMC9218891 DOI: 10.1177/20417314221105305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation is the only definitive treatment for many diseases that affect this organ, however, its quantity and viability are reduced. The study of liver scaffolds based on an extracellular matrix is a tissue bioengineering strategy with great application in regenerative medicine. Collectively, recent studies suggest that liver scaffold transplantation may assist in reestablishing hepatic function in preclinical diseased animals, which represents a great potential for application as a treatment for patients with liver disease in the future. This review focuses on useful strategies to promote liver scaffold transplantation and the main open questions about this context. We outline the current knowledge about ex vivo bioengineered liver transplantation, including the surgical techniques, recipient survival time, scaffold preparation before transplantation, and liver disease models. We also highlight the current limitations and future directions regarding in vivo bioengineering techniques.
Collapse
Affiliation(s)
- Marlon Lemos Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa - INCT - REGENERA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bruno Andrade Paranhos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa - INCT - REGENERA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Regina Coeli Dos Santos Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa - INCT - REGENERA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
10
|
Cozzi E, Schneeberger S, Bellini MI, Berglund E, Böhmig G, Fowler K, Hoogduijn M, Jochmans I, Marckmann G, Marson L, Neuberger J, Oberbauer R, Pierson RN, Reichart B, Scobie L, White C, Naesens M. Organ transplants of the future: planning for innovations including xenotransplantation. Transpl Int 2021; 34:2006-2018. [PMID: 34459040 DOI: 10.1111/tri.14031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
The future clinical application of animal-to-human transplantation (xenotransplantation) is of importance to society as a whole. Favourable preclinical data relevant to cell, tissue and solid organ xenotransplants have been obtained from many animal models utilizing genetic engineering and protocols of pathogen-free husbandry. Findings have reached a tipping point, and xenotransplantation of solid organs is approaching clinical evaluation, the process of which now requires close deliberation. Such discussions include considering when there is sufficient evidence from preclinical animal studies to start first-in-human xenotransplantation trials. The present article is based on evidence and opinions formulated by members of the European Society for Organ Transplantation who are involved in the Transplantation Learning Journey project. The article includes a brief overview of preclinical concepts and biology of solid organ xenotransplantation, discusses the selection of candidates for first-in-human studies and considers requirements for study design and conduct. In addition, the paper emphasizes the need for a regulatory framework for xenotransplantation of solid organs and the essential requirement for input from public and patient stakeholders.
Collapse
Affiliation(s)
- Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Irene Bellini
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
- Department of Emergency Medicine and Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Erik Berglund
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska Institute and ITB-MED, Stockholm, Sweden
| | - Georg Böhmig
- Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Kevin Fowler
- The Voice of the Patient, Inc., Chicago, IL, USA
| | - Martin Hoogduijn
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ina Jochmans
- Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Georg Marckmann
- Institute of Ethics, History and Theory of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lorna Marson
- The Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Linda Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
11
|
Reichart B, Längin M, Denner J, Schwinzer R, Cowan PJ, Wolf E. Pathways to Clinical Cardiac Xenotransplantation. Transplantation 2021; 105:1930-1943. [PMID: 33350675 DOI: 10.1097/tp.0000000000003588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart transplantation is the only long-lasting lifesaving option for patients with terminal cardiac failure. The number of available human organs is however far below the actual need, resulting in substantial mortality of patients while waiting for a human heart. Mechanical assist devices are used to support cardiac function but are associated with a high risk of severe complications and poor quality of life for the patients. Consistent success in orthotopic transplantation of genetically modified pig hearts into baboons indicates that cardiac xenotransplantation may become a clinically applicable option for heart failure patients who cannot get a human heart transplant. In this overview, we project potential paths to clinical cardiac xenotransplantation, including the choice of genetically modified source pigs; associated requirements of microbiological, including virological, safety; optimized matching of source pig and recipient; and specific treatments of the donor heart after explantation and of the recipients. Moreover, selection of patients and the regulatory framework will be discussed.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | - Reinhard Schwinzer
- Department of General-, Visceral-, and Transplantation Surgery, Transplant Laboratory, Hannover Medical School, Hannover, Germany
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, VIC, Australia
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
- Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| |
Collapse
|
12
|
Walters EM, Burlak C. Xenotransplantation literature update, May/June2020. Xenotransplantation 2020; 27:e12638. [PMID: 32896009 DOI: 10.1111/xen.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022]
Affiliation(s)
| | - Christopher Burlak
- Department of Surgery, Schultz Diabetes Institutes, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|