1
|
The Jorō spider (Trichonephila clavata) in the southeastern U.S.: an opportunity for research and a call for reasonable journalism. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractTrichonephila clavata, also known as the Jorō spider, was first discovered in Georgia, USA in 2014. Its arrival from Asia and subsequent range expansion across the southeastern U.S. has received much media coverage, spanning from factual to sensational. Here, we describe T. clavata's invasion potential and known invasive range, and review its biology, dispersal abilities, potential impacts, and management strategies. As of October 2022, T. clavata's range spans at least 120,000 km2, occurring across Georgia, South Carolina, North Carolina, and Tennessee, with additional reports in Alabama, Maryland, Oklahoma, and West Virginia. Its pattern of spread suggests it is primarily driven by natural dispersal mechanisms, such as ballooning, though human-mediated transport cannot be discounted. Like other large-bodied orb-weavers, T. clavata captures and feeds on flying insects and potentially other small animals, and we suggest thirteen co-occurring spider species that should be monitored for competition with T. clavata for resources and web-building sites. Since T. clavata is spreading across both natural and urban habitats, management options are limited. Overall, very little is known about this species in its new North American range, especially its impacts within this novel ecosystem. Thus, we advise journalists and experts alike against exaggerating its potential environmental impact or uncritical acceptance of the spider as ecologically harmless. Instead, T. clavata's rapid spread should be carefully monitored, and we should take a cautious, evidence-based approach when determining next steps.
Collapse
|
2
|
Dissecting a Geographical Colourful Tapestry: Phylogeography of the Colour Polymorphic Spider Gasteracantha cancriformis. J ZOOL SYST EVOL RES 2022. [DOI: 10.1155/2022/8112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Species with large distributions provide unique opportunities to test how geography has influenced biotic diversification. In this work, we aimed to explore the effect of geographic barriers on the distribution of the phenotypic and genetic variation of a spider species that is widespread in continental and insular America. We obtained an alignment of the mitochondrial locus Cytochrome Oxidase I (COI) for 408 individuals across the geographic range of Gasteracantha cancriformis. We used phylogenetics, population genetics, and morphology to explore the genetic and phenotypic variation of this species. We found five genetically differentiated and geographically structured populations. Three of them are distributed in continental America, separated by the Andes mountains, and two are in the Caribbean and Galapagos Islands. Some of these geographic clades shared haplotypes between them, which may be a consequence of dispersal. We detected at least 20 phenotypes of G. cancriformis, some of which were exclusive to a geographic region, while others occurred in multiple regions. We did not observe well-defined morphological differences across male genitalia. This evidence suggests that G. cancriformis is a widespread species with high phenotypic variation that should be explored in more depth.
Collapse
|
3
|
Biogeography of Long-Jawed Spiders Reveals Multiple Colonization of the Caribbean. DIVERSITY 2021. [DOI: 10.3390/d13120622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dispersal ability can affect levels of gene flow thereby shaping species distributions and richness patterns. The intermediate dispersal model of biogeography (IDM) predicts that in island systems, species diversity of those lineages with an intermediate dispersal potential is the highest. Here, we tested this prediction on long-jawed spiders (Tetragnatha) of the Caribbean archipelago using phylogenies from a total of 318 individuals delineated into 54 putative species. Our results support a Tetragnatha monophyly (within our sampling) but reject the monophyly of the Caribbean lineages, where we found low endemism yet high diversity. The reconstructed biogeographic history detects a potential early overwater colonization of the Caribbean, refuting an ancient vicariant origin of the Caribbean Tetragnatha as well as the GAARlandia land-bridge scenario. Instead, the results imply multiple colonization events to and from the Caribbean from the mid-Eocene to late-Miocene. Among arachnids, Tetragnatha uniquely comprises both excellently and poorly dispersing species. A direct test of the IDM would require consideration of three categories of dispersers; however, long-jawed spiders do not fit one of these three a priori definitions, but rather represent a more complex combination of attributes. A taxon such as Tetragnatha, one that readily undergoes evolutionary changes in dispersal propensity, can be referred to as a ‘dynamic disperser’.
Collapse
|
4
|
Turk E, Kralj-Fišer S, Kuntner M. Exploring diversification drivers in golden orbweavers. Sci Rep 2021; 11:9248. [PMID: 33927261 PMCID: PMC8084975 DOI: 10.1038/s41598-021-88555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
Heterogeneity in species diversity is driven by the dynamics of speciation and extinction, potentially influenced by organismal and environmental factors. Here, we explore macroevolutionary trends on a phylogeny of golden orbweavers (spider family Nephilidae). Our initial inference detects heterogeneity in speciation and extinction, with accelerated extinction rates in the extremely sexually size dimorphic Nephila and accelerated speciation in Herennia, a lineage defined by highly derived, arboricolous webs, and pronounced island endemism. We evaluate potential drivers of this heterogeneity that relate to organisms and their environment. Primarily, we test two continuous organismal factors for correlation with diversification in nephilids: phenotypic extremeness (female and male body length, and sexual size dimorphism as their ratio) and dispersal propensity (through range sizes as a proxy). We predict a bell-shaped relationship between factor values and speciation, with intermediate phenotypes exhibiting highest diversification rates. Analyses using SSE-class models fail to support our two predictions, suggesting that phenotypic extremeness and dispersal propensity cannot explain patterns of nephilid diversification. Furthermore, two environmental factors (tropical versus subtropical and island versus continental species distribution) indicate only marginal support for higher speciation in the tropics. Although our results may be affected by methodological limitations imposed by a relatively small phylogeny, it seems that the tested organismal and environmental factors play little to no role in nephilid diversification. In the phylogeny of golden orbweavers, the recent hypothesis of universal diversification dynamics may be the simplest explanation of macroevolutionary patterns.
Collapse
Affiliation(s)
- Eva Turk
- Evolutionary Zoology Laboratory, Institute of Biology, ZRC SAZU, Ljubljana, Slovenia.
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.
| | - Simona Kralj-Fišer
- Evolutionary Zoology Laboratory, Institute of Biology, ZRC SAZU, Ljubljana, Slovenia
| | - Matjaž Kuntner
- Evolutionary Zoology Laboratory, Institute of Biology, ZRC SAZU, Ljubljana, Slovenia
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei, China
- University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Machine learning approaches identify male body size as the most accurate predictor of species richness. BMC Biol 2020; 18:105. [PMID: 32854698 PMCID: PMC7453550 DOI: 10.1186/s12915-020-00835-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major challenge in biodiversity science is to understand the factors contributing to the variability of species richness -the number of different species in a community or region - among comparable taxonomic lineages. Multiple biotic and abiotic factors have been hypothesized to have an effect on species richness and have been used as its predictors, but identifying accurate predictors is not straightforward. Spiders are a highly diverse group, with some 48,000 species in 120 families; yet nearly 75% of all species are found within just the ten most speciose families. Here we use a Random Forest machine learning algorithm to test the predictive power of different variables hypothesized to affect species richness of spider genera. RESULTS We test the predictive power of 22 variables from spiders' morphological, genetic, geographic, ecological and behavioral landscapes on species richness of 45 genera selected to represent the phylogenetic and biological breath of Araneae. Among the variables, Random Forest analyses find body size (specifically, minimum male body size) to best predict species richness. Multiple Correspondence analysis confirms this outcome through a negative relationship between male body size and species richness. Multiple Correspondence analyses furthermore establish that geographic distribution of congeneric species is positively associated with genus diversity, and that genera from phylogenetically older lineages are species poorer. Of the spider-specific traits, neither the presence of ballooning behavior, nor sexual size dimorphism, can predict species richness. CONCLUSIONS We show that machine learning analyses can be used in deciphering the factors associated with diversity patterns. Since no spider-specific biology could predict species richness, but the biologically universal body size did, we believe these conclusions are worthy of broader biological testing. Future work on other groups of organisms will establish whether the detected associations of species richness with small body size and wide geographic ranges hold more broadly.
Collapse
|
6
|
Dupérré N, Francisco C, Santana-Propper E, Agnarsson I, Binford GJ. Heteroonops (Araneae, Oonopidae) spiders from Hispaniola: the discovery of ten new species. Zookeys 2020; 964:1-30. [PMID: 32939145 PMCID: PMC7471135 DOI: 10.3897/zookeys.964.51554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The Caribbean biodiversity hotspot harbors vast reserves of undiscovered species. A large-scale inventory of Caribbean arachnids (CarBio) is uncovering new species across the arachnid tree of life, and allowing inference of the evolutionary history that has generated this diversity. Herein we describe ten new species of Heteroonops (Oonopidae, or goblin spiders), from Hispaniola: H.scapulasp. nov., H.jurassicussp. nov., H.aylinalegreaesp. nov., H.verrucasp. nov., H.renebarbaisp. nov., H.yumasp. nov., H.carlosviquezisp. nov., H.gabrielsantosisp. nov., H.solanllycarreroaesp. nov. and H.constanzasp. nov. The occurrence of the pantropical type species Heteroonopsspinimanus (Simon, 1891) is reported and new localities are given for: H.validus (Bryant, 1948), H.vega (Platnick & Dupérré, 2009) and H.castelloides (Platnick & Dupérré, 2009). Molecular phylogenies indicate substantial genetic divergence separating these taxa. This work adds to evidence that the depth of diversity in the Caribbean biodiversity hotspot is particularly striking for tiny taxa living in leaf litter.
Collapse
Affiliation(s)
- Nadine Dupérré
- Technical Assistant, Department of Arachnology, Centrum für Naturkunde, Universität de Hamburg, Germany Universität de Hamburg Hamburg Germany
| | - Charlotte Francisco
- Lewis & Clark College, 0615 SW Palatine Hill Rd. Portland, Oregon, 97219, USA Lewis & Clark College Portland United States of America
| | - Ella Santana-Propper
- Lewis & Clark College, 0615 SW Palatine Hill Rd. Portland, Oregon, 97219, USA Lewis & Clark College Portland United States of America
| | - Ingi Agnarsson
- University of Vermont, Department of Biology, 109 Carrigan Drive, Burlington, VT, 05405-0086, USA University of Vermont Burlington United States of America.,Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA National Museum of Natural History Washington United States of America
| | - Greta J Binford
- Lewis & Clark College, 0615 SW Palatine Hill Rd. Portland, Oregon, 97219, USA Lewis & Clark College Portland United States of America
| |
Collapse
|
7
|
Amorim IC, Melo ES, Moura RC, Wallau GL. Diverse mobilome of Dichotomius (Luederwaldtinia) schiffleri (Coleoptera: Scarabaeidae) reveals long-range horizontal transfer events of DNA transposons. Mol Genet Genomics 2020; 295:1339-1353. [PMID: 32601732 DOI: 10.1007/s00438-020-01703-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that are able to move from one genomic location to another. These selfish elements are known as genomic parasites, since they hijack the host molecular machinery to generate new copies of themselves. The mobilization of TEs can be seen as a natural mutagen because new TE copies can insert into different loci and impact host genomic structure through different mechanisms. Although our knowledge about TEs is improving with new genomes available, there is still very limited data about the mobilome of species from the Coleoptera order, the most diverse order of insects, including species from the Scarabaeidae family. Therefore, the main goal of this study was to characterize the mobilome of D. (Luederwaldtinia) schiffleri, based on low-coverage genome sequencing, and reconstruct their evolutionary history. We used a combination of four different approaches for TE characterization and maximum likelihood phylogenetic analysis to study their evolution. We found a large and diverse mobilome composed of 38 TE superfamilies, 20 DNA transposon and 18 retrotransposons, accounting for 21% of the genome. Moreover, we found a number of incongruences between the TE and host phylogenetic trees in three DNA transposon TE superfamilies, which represents five TE families, suggesting possible horizontal transfer events between highly divergent taxa. In summary, we found an abundant and diverse mobilome and a number of horizontal transfer events that have shaped the evolutionary history of this species.
Collapse
Affiliation(s)
- I C Amorim
- Laboratório de Biodiversidade E Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310- Santo Amaro, Recife, PE, CEP: 50100-130, Brasil
| | - E S Melo
- Departamento de Entomologia, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil
| | - R C Moura
- Laboratório de Biodiversidade E Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310- Santo Amaro, Recife, PE, CEP: 50100-130, Brasil.
| | - G L Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil.
| |
Collapse
|
8
|
Botham JL, Haddad CR, Gryzenhout M, Swart VR, Bredenhand E. High genetic diversity of spider species in a mosaic montane grassland landscape. PLoS One 2020; 15:e0234437. [PMID: 32511281 PMCID: PMC7279597 DOI: 10.1371/journal.pone.0234437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022] Open
Abstract
Gene flow and genetic variation were examined within and among populations of five of the most common spider species in shrublands of the mountainous Golden Gate Highlands National Park (GGHNP), South Africa. These species included three active hunters, Dendryphantes purcelli Peckham & Peckham, 1903 (Salticidae), Pherecydes tuberculatus O.P.-Cambridge, 1883 (Thomisidae) and Philodromus browningi Lawrence, 1952 (Philodromidae), and two web-builders, Neoscona subfusca (C.L. Koch, 1837) (Araneidae) and a Theridion Walckenaer, 1802 species (Theridiidae). A total of 249 spiders (57 D. purcelli, 69 N. subfusca, 34 P. browningi, 56 P. tuberculatus and 33 Theridion sp.) were collected and analysed from six shrubland localities in the park. Analyses of sequence variation of the mitochondrial cytochrome oxidase c subunit I (COI) gene for each species revealed relatively low nucleotide diversity (π < 0.0420) but high genetic diversity (Hd > 0.6500) within populations for all species, except P. tuberculatus. Genetic differentiation was also noted to differ between species, with only P. tuberculatus indicating very large divergence (Fst > 0.2500). These results were reflected by gene flow, with D. purcelli, N. subfusca and the Theridion sp. estimated as experiencing more than one disperser per generation. Overall, highest gene flow was found in the two web-building species, indicating possible high dispersal ability of these spiders in the GGHNP. Additionally, constructed phylogenies indicated possible cryptic speciation occurring in the majority of the investigated species. Our current results indicate that the five investigated spider species were able to maintain gene flow between shrubland populations within the GGHNP to some degree, despite the mountainous landscape. However, further analyses incorporating additional molecular markers are needed to properly determine the extent of genetic diversity and gene flow of these species within the GGHNP.
Collapse
Affiliation(s)
- Jason L. Botham
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
- * E-mail:
| | - Charles R. Haddad
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, Free State, South Africa
| | - Vaughn R. Swart
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| | - Emile Bredenhand
- Department of Zoology and Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, Free State, South Africa
| |
Collapse
|
9
|
Chamberland L, Salgado-Roa FC, Basco A, Crastz-Flores A, Binford GJ, Agnarsson I. Phylogeography of the widespread Caribbean spiny orb weaver Gasteracantha cancriformis. PeerJ 2020; 8:e8976. [PMID: 32391201 PMCID: PMC7196328 DOI: 10.7717/peerj.8976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Modern molecular analyses are often inconsistent with pre-cladistic taxonomic hypotheses, frequently indicating higher richness than morphological taxonomy estimates. Among Caribbean spiders, widespread species are relatively few compared to the prevalence of single island endemics. The taxonomic hypothesis Gasteracantha cancriformis circumscribes a species with profuse variation in size, color and body form. Distributed throughout the Neotropics, G. cancriformis is the only morphological species of Gasteracantha in the New World in this globally distributed genus. METHODS We inferred phylogenetic relationships across Neotropical populations of Gasteracantha using three target genes. Within the Caribbean, we estimated genetic diversity, population structure, and gene flow among island populations. RESULTS Our findings revealed a single widespread species of Gasteracantha throughout the Caribbean, G. cancriformis, while suggesting two recently divergent mainland populations that may represent separate species, diverging linages, or geographically isolated demes. The concatenated and COI (Cytochrome c oxidase subunit 1) phylogeny supported a Caribbean clade nested within the New World. Genetic variability was high between island populations for our COI dataset; however, gene flow was also high, especially between large, adjacent islands. We found structured genetic and morphological variation within G. cancriformis island populations; however, this variation does not reflect genealogical relationships. Rather, isolation by distance and local morphological adaptation may explain the observed variation.
Collapse
Affiliation(s)
- Lisa Chamberland
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Fabian C. Salgado-Roa
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota, Colombia
| | - Alma Basco
- University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico
| | | | | | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|