1
|
Subramanian V, Juhr D, Johnson LS, Yem JB, Giansanti P, Grumbach IM. Changes in the Proteome of the Circle of Willis during Aging Reveal Signatures of Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4887877. [PMID: 38962180 PMCID: PMC11221951 DOI: 10.1155/2024/4887877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Approximately 70% of all strokes occur in patients over 65 years old, and stroke increases the risk of developing dementia. The circle of Willis (CoW), the ring of arteries at the base of the brain, links the intracerebral arteries to one another to maintain adequate cerebral perfusion. The CoW proteome is affected in cerebrovascular and neurodegenerative diseases, but changes related to aging have not been described. Here, we report on a quantitative proteomics analysis comparing the CoW from five young (2-3-month-old) and five aged male (18-20-month-old) mice using gene ontology (GO) enrichment, ingenuity pathway analysis (IPA), and iPathwayGuide tools. This revealed 242 proteins that were significantly dysregulated with aging, among which 189 were upregulated and 53 downregulated. GO enrichment-based analysis identified blood coagulation as the top biological function that changed with age and integrin binding and extracellular matrix constituents as the top molecular functions. Consistent with these findings, iPathwayGuide-based impact analysis revealed associations between aging and the complement and coagulation, platelet activation, ECM-receptor interaction, and metabolic process pathways. Furthermore, IPA analysis revealed the enrichment of 97 canonical pathways that contribute to inflammatory responses, as well as 59 inflammation-associated upstream regulators including 39 transcription factors and 20 cytokines. Thus, aging-associated changes in the CoW proteome in male mice demonstrate increases in metabolic, thrombotic, and inflammatory processes.
Collapse
Affiliation(s)
- Vikram Subramanian
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Denise Juhr
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Lydia S. Johnson
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Justin B. Yem
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Piero Giansanti
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS@MRI)Technical University of Munich, Munich, Germany
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Free Radical and Radiation Biology ProgramDepartment of Radiation OncologyCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
2
|
Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 2024; 22:285. [PMID: 38790068 PMCID: PMC11118732 DOI: 10.1186/s12964-024-01663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a complex and multifaceted process involving a variety of interrelated molecular mechanisms and cellular systems. Phenotypically, the biological aging process is accompanied by a gradual loss of cellular function and the systemic deterioration of multiple tissues, resulting in susceptibility to aging-related diseases. Emerging evidence suggests that aging is closely associated with telomere attrition, DNA damage, mitochondrial dysfunction, loss of nicotinamide adenine dinucleotide levels, impaired macro-autophagy, stem cell exhaustion, inflammation, loss of protein balance, deregulated nutrient sensing, altered intercellular communication, and dysbiosis. These age-related changes may be alleviated by intervention strategies, such as calorie restriction, improved sleep quality, enhanced physical activity, and targeted longevity genes. In this review, we summarise the key historical progress in the exploration of important causes of aging and anti-aging strategies in recent decades, which provides a basis for further understanding of the reversibility of aging phenotypes, the application prospect of synthetic biotechnology in anti-aging therapy is also prospected.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Juyue Luo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
3
|
Krammer C, Yang B, Reichl S, Besson-Girard S, Ji H, Bolini V, Schulte C, Noels H, Schlepckow K, Jocher G, Werner G, Willem M, El Bounkari O, Kapurniotu A, Gokce O, Weber C, Mohanta S, Bernhagen J. Pathways linking aging and atheroprotection in Mif-deficient atherosclerotic mice. FASEB J 2023; 37:e22752. [PMID: 36794636 DOI: 10.1096/fj.202200056r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.
Collapse
Affiliation(s)
- Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabrina Reichl
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Simon Besson-Girard
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), LMU Munich, Planegg-Martinsried, Germany
| | - Hao Ji
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
| | - Verena Bolini
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Corinna Schulte
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Werner
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich (TUM), Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| |
Collapse
|
4
|
Chintapula U, Chikate T, Sahoo D, Kieu A, Guerrero Rodriguez ID, Nguyen KT, Trott D. Immunomodulation in age-related disorders and nanotechnology interventions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1840. [PMID: 35950266 PMCID: PMC9840662 DOI: 10.1002/wnan.1840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tanmayee Chikate
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deepsundar Sahoo
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Amie Kieu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
5
|
Njoku DB, Schilling JD, Finck BN. Mechanisms of nonalcoholic steatohepatitis-associated cardiomyopathy: key roles for liver-heart crosstalk. Curr Opin Lipidol 2022; 33:295-299. [PMID: 35942818 DOI: 10.1097/mol.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Nonalcoholic steatohepatitis (NASH) is a multisystem disease that affects not only the liver but also heart, pancreas, and kidney. We currently lack a comprehensive understanding of mechanisms responsible for the development of NASH-associated cardiomyopathy or the influence of sex on pathophysiology. There is a critical need to address these gaps in knowledge in order to accelerate translation of knowledge into clinical practice. RECENT FINDINGS NASH and cardiovascular disease share common risk factors such as chronic inflammation, hyperlipidemia, and insulin resistance. Early cardiac dysfunction in NASH that is independent of obesity or other cardiometabolic risk factors suggests roles for liver-heart crosstalk in disease pathogenesis. Inflammation is a driving force in the pathogenesis of NASH, and it is likely that 'spill over' of NASH inflammation contributes to the development of cardiomyopathy. However, molecular and cellular mechanisms that mediate NASH-associated cardiomyopathy remain unclear because of inherent limitations of experimental models. Even so, recent studies implicate inflammatory, metabolic, and physiologic mechanisms that enhance our understanding of NASH-associated cardiomyopathy and the role of liver-heart crosstalk. SUMMARY An innovative, detailed, and mechanistic understanding of NASH-associated cardiomyopathy is relevant to public health and will be fundamental for the comprehensive care of these patients.
Collapse
Affiliation(s)
- Dolores B Njoku
- Division of Pediatric Anesthesiology, Department of Anesthesiology
- Department of Pathology and Immunology
| | | | - Brian N Finck
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Amini P, Amrovani M, Nassaj ZS, Ajorlou P, Pezeshgi A, Ghahrodizadehabyaneh B. Hypertension: Potential Player in Cardiovascular Disease Incidence in Preeclampsia. Cardiovasc Toxicol 2022; 22:391-403. [PMID: 35347585 DOI: 10.1007/s12012-022-09734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Preeclampsia (PE) is one of the complications, that threatens pregnant mothers during pregnancy. According to studies, it accounts for 3-7% of all pregnancies, and also is effective in preterm delivery. PE is the third leading cause of death in pregnant women. High blood pressure in PE can increase the risk of developing cardiovascular disease (CVD) in cited individuals, and is one of the leading causes of death in PE individuals. Atrial natriuretic peptide (ANP), Renin-Angiotensin system and nitric oxide (NO) are some of involved factors in regulating blood pressure. Therefore, by identifying the signaling pathways, that are used by these molecules to regulate and modulate blood pressure, appropriate treatment strategies can be provided to reduce blood pressure through target therapy in PE individuals; consequently, it can reduce CVD risk and mortality.
Collapse
Affiliation(s)
- Parya Amini
- Atherosclerosis Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Parisa Ajorlou
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aiyoub Pezeshgi
- Internal Medicine Department, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | |
Collapse
|
7
|
Laučytė-Cibulskienė A, Smaliukaitė M, Dadonienė J, Čypienė A, Mikolaitytė J, Ryliškytė L, Laucevičius A, Badarienė J. Inflammaging and Vascular Function in Metabolic Syndrome: The Role of Hyperuricemia. Medicina (B Aires) 2022; 58:medicina58030373. [PMID: 35334550 PMCID: PMC8953262 DOI: 10.3390/medicina58030373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/10/2023] Open
Abstract
Background and Objectives: Early vascular aging determines a more rapid course of age-related arterial changes. It may be induced by a proinflammatory state, caused by hyperuricemia and metabolic syndrome and their interrelationship. However, the impact of serum uric acid (SUA) on early arterial stiffening and vascular function remains uncertain. Materials and Methods: A total of 696 participants (439 women aged 50–65 and 257 men aged 40–55) from the Lithuanian High Cardiovascular Risk (LitHiR) primary prevention program were enrolled in the study. They underwent anthropometric measurements and laboratory testing along with arterial parameters’ evaluation. Quality carotid stiffness (QCS), carotid-radial pulse wave velocity (crPWV), carotid-femoral pulse wave velocity (cfPWV), flow-mediated dilatation (FMD), and carotid intima-media thickness (CIMT) were registered. Results: We found that hyperuricemia was significantly associated with inflammation, registered by high-sensitivity C-reactive protein in both sexes. A very weak but significant association was observed between cfPWV and SUA in men and in women, while, after adjusting for risk factors, it remained significant only in women. A positive, weak, but significant association was also observed for QCS, both right and left in women. No relationship was observed between crPWV, FMD, CIMT, and SUA.
Collapse
Affiliation(s)
- Agnė Laučytė-Cibulskienė
- Department of Clinical Sciences Malmo, Lund University, Skane University Hospital, 205 02 Malmö, Sweden;
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.D.); (A.Č.); (L.R.); (A.L.); (J.B.)
| | - Monika Smaliukaitė
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.D.); (A.Č.); (L.R.); (A.L.); (J.B.)
- Correspondence:
| | - Jolanta Dadonienė
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.D.); (A.Č.); (L.R.); (A.L.); (J.B.)
- State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Alma Čypienė
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.D.); (A.Č.); (L.R.); (A.L.); (J.B.)
- State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Jurgita Mikolaitytė
- State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Ligita Ryliškytė
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.D.); (A.Č.); (L.R.); (A.L.); (J.B.)
| | - Aleksandras Laucevičius
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.D.); (A.Č.); (L.R.); (A.L.); (J.B.)
- State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Jolita Badarienė
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.D.); (A.Č.); (L.R.); (A.L.); (J.B.)
- State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania;
| |
Collapse
|
8
|
Jakobsson J, Cotgreave I, Furberg M, Arnberg N, Svensson M. Potential Physiological and Cellular Mechanisms of Exercise That Decrease the Risk of Severe Complications and Mortality Following SARS-CoV-2 Infection. Sports (Basel) 2021; 9:121. [PMID: 34564326 PMCID: PMC8472997 DOI: 10.3390/sports9090121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unmasked mankind's vulnerability to biological threats. Although higher age is a major risk factor for disease severity in COVID-19, several predisposing risk factors for mortality are related to low cardiorespiratory and metabolic fitness, including obesity, cardiovascular disease, diabetes, and hypertension. Reaching physical activity (PA) guideline goals contribute to protect against numerous immune and inflammatory disorders, in addition to multi-morbidities and mortality. Elevated levels of cardiorespiratory fitness, being non-obese, and regular PA improves immunological function, mitigating sustained low-grade systemic inflammation and age-related deterioration of the immune system, or immunosenescence. Regular PA and being non-obese also improve the antibody response to vaccination. In this review, we highlight potential physiological, cellular, and molecular mechanisms that are affected by regular PA, increase the host antiviral defense, and may determine the course and outcome of COVID-19. Not only are the immune system and regular PA in relation to COVID-19 discussed, but also the cardiovascular, respiratory, renal, and hormonal systems, as well as skeletal muscle, epigenetics, and mitochondrial function.
Collapse
Affiliation(s)
- Johan Jakobsson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| | - Ian Cotgreave
- Division of Biomaterials and Health, Department of Pharmaceutical and Chemical Safety, Research Institutes of Sweden, 151 36 Södertälje, Sweden;
| | - Maria Furberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Michael Svensson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| |
Collapse
|
9
|
Ciccone V, Genah S, Morbidelli L. Endothelium as a Source and Target of H 2S to Improve Its Trophism and Function. Antioxidants (Basel) 2021; 10:antiox10030486. [PMID: 33808872 PMCID: PMC8003673 DOI: 10.3390/antiox10030486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium consists of a single layer of squamous endothelial cells (ECs) lining the inner surface of blood vessels. Nowadays, it is no longer considered as a simple barrier between the blood and vessel wall, but a central hub to control blood flow homeostasis and fulfill tissue metabolic demands by furnishing oxygen and nutrients. The endothelium regulates the proper functioning of vessels and microcirculation, in terms of tone control, blood fluidity, and fine tuning of inflammatory and redox reactions within the vessel wall and in surrounding tissues. This multiplicity of effects is due to the ability of ECs to produce, process, and release key modulators. Among these, gasotransmitters such as nitric oxide (NO) and hydrogen sulfide (H2S) are very active molecules constitutively produced by endotheliocytes for the maintenance and control of vascular physiological functions, while their impairment is responsible for endothelial dysfunction and cardiovascular disorders such as hypertension, atherosclerosis, and impaired wound healing and vascularization due to diabetes, infections, and ischemia. Upregulation of H2S producing enzymes and administration of H2S donors can be considered as innovative therapeutic approaches to improve EC biology and function, to revert endothelial dysfunction or to prevent cardiovascular disease progression. This review will focus on the beneficial autocrine/paracrine properties of H2S on ECs and the state of the art on H2S potentiating drugs and tools.
Collapse
|
10
|
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev 2020; 34:341-359. [PMID: 32029454 PMCID: PMC7050484 DOI: 10.1101/gad.334425.119] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions.
Collapse
Affiliation(s)
- Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine M Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Human Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health, Moscow 119146, Russian Federation
| |
Collapse
|
11
|
Nannelli G, Ziche M, Donnini S, Morbidelli L. Endothelial Aldehyde Dehydrogenase 2 as a Target to Maintain Vascular Wellness and Function in Ageing. Biomedicines 2020; 8:E4. [PMID: 31947800 PMCID: PMC7168060 DOI: 10.3390/biomedicines8010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Endothelial cells are the main determinants of vascular function, since their dysfunction in response to a series of cardiovascular risk factors is responsible for disease progression and further consequences. Endothelial dysfunction, if not resolved, further aggravates the oxidative status and vessel wall inflammation, thus igniting a vicious cycle. We have furthermore to consider the physiological manifestation of vascular dysfunction and chronic low-grade inflammation during ageing, also known as inflammageing. Based on these considerations, knowledge of the molecular mechanism(s) responsible for endothelial loss-of-function can be pivotal to identify novel targets of intervention with the aim of maintaining endothelial wellness and vessel trophism and function. In this review we have examined the role of the detoxifying enzyme aldehyde dehydrogenase 2 (ALDH2) in the maintenance of endothelial function. Its impairment indeed is associated with oxidative stress and ageing, and in the development of atherosclerosis and neurodegenerative diseases. Strategies to improve its expression and activity may be beneficial in these largely diffused disorders.
Collapse
Affiliation(s)
- Ginevra Nannelli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (G.N.); (S.D.)
| | - Marina Ziche
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (G.N.); (S.D.)
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (G.N.); (S.D.)
| |
Collapse
|