1
|
Tang H, Li J, Jin M, Li C, Zhai C, Wang J, Huang T, Ding X. Caloric restriction impacts skin barrier function and attenuates the development of hyperplasia skin disease. Front Nutr 2024; 11:1423524. [PMID: 39371941 PMCID: PMC11449767 DOI: 10.3389/fnut.2024.1423524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
Caloric restriction (CR) stands out as one of the most potent interventions that prolong lifespan and mitigate age-associated diseases. Despite its well-established systemic effects, the impact of CR on skin physiological function remains poorly understood, and whether the intervention can alleviate the progression of inflammatory skin diseases remains uncertain. Here, we investigated the effects of CR on mouse skin barrier function and inflammatory response. Our results revealed that CR led to dramatic atrophy in the skin subcutaneous layer. The expression of barrier proteins and trans-epidermal water loss remain largely unchanged. Intriguingly, skin from CR mice exhibited reduced expression of inflammatory cytokines under steady conditions. In an imiquimod (IMQ)-induced mouse model of psoriasis, CR treatment attenuated the pathogenesis of psoriasis phenotypes, accompanied by a reduced activation of mTOR signaling in the psoriatic skin. Taken together, our findings shed light on the complex interplay between metabolic interventions and skin health, suggesting that CR has the potential to serve as a modulator of inflammatory responses in the skin.
Collapse
Affiliation(s)
- Huihao Tang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
| | - Jianzhou Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
| | - Mengyu Jin
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
| | - Chengliang Li
- LB Cosmeceutical Technology Co., Ltd., Shanghai, China
| | - Chuntao Zhai
- LB Cosmeceutical Technology Co., Ltd., Shanghai, China
| | - Juan Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
| | - Taomin Huang
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaolei Ding
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
González-Blázquez R, Gil-Ortega M, Alcalá M, González-Moreno D, Viana M, Chowen JA, Sanz-Gómez M, Fernández-Alfonso MS, Somoza B. Short-term dietary intervention improves endothelial dysfunction induced by high-fat feeding in mice through upregulation of the AMPK-CREB signaling pathway. Acta Physiol (Oxf) 2023; 239:e14023. [PMID: 37553856 DOI: 10.1111/apha.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
AIM In addition to functioning as an energy sensor switch, AMPK plays a key role in the maintenance of cardiovascular homeostasis. However, obesity disrupts AMPK signaling, contributing to endothelial dysfunction and cardiovascular disease. This study aimed to elucidate if a short-term dietary intervention consisting in replacing the high-fat diet with a standard diet for 2 weeks could reverse obesity-induced endothelial dysfunction via AMPK-CREB activation. METHODS For this, 5-week-old male C57BL6J mice were fed a standard (Chow) or a high-fat (HF) diet for 8 weeks. The HF diet was replaced by the chow diet for the last 2 weeks in half of HF mice, generating 3 groups: Chow, HF and HF-Chow. Vascular reactivity and western-blot assays were performed in the thoracic aorta. RESULTS Returning to a chow diet significantly reduced body weight and glucose intolerance. Relaxant responses to acetylcholine and the AMPK activator (AICAR) were significantly impaired in HF mice but improved in HF-Chow mice. The protein levels of AMPKα, p-CREB and antioxidant systems (heme oxygenase-1 (HO-1) and catalase) were significantly reduced in HF but normalized in HF-Chow mice. CONCLUSION Improving dietary intake by replacing a HF diet with a standard diet improves AMPK-mediated responses due to the upregulation of the AMPK/CREB/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Daniel González-Moreno
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Julie A Chowen
- Department of Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Marta Sanz-Gómez
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
3
|
Melo DDS, Costa Pereira L, Santos CS, Mendes BF, Konig IFM, Garcia BCC, Queiroz IP, Moreno LG, Cassilhas RC, Esteves EA, Vieira ER, Magalhães FDC, Capettini LDSA, Sousa RALD, Sampaio KH, Dias Peixoto MF. Intense Caloric Restriction from Birth Prevents Cardiovascular Aging in Rats. Rejuvenation Res 2023; 26:194-205. [PMID: 37694594 DOI: 10.1089/rej.2023.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
We previously demonstrated that a 50% caloric restriction (CR) from birth improves several cardiometabolic risk factors in young rats. In this study, we investigated in middle-aged rats the consequences of a 50% CR from birth on cardiometabolic risk factors, heart function/morphology, ventricular arrhythmia, and fibrillation incidence, and cardiac intracellular proteins involved with redox status and cell survival. From birth to the age of 18 months, rats were divided into an Ad Libitum (AL18) group, which had free access to food, and a CR18 group, which had food limited to 50% of that consumed by the AL18. Resting metabolic rate, blood pressure, and heart rate were recorded, and oral glucose and intraperitoneal insulin tolerance tests were performed. Blood was collected for biochemical analyses, and visceral fat and liver were harvested and weighed. Hearts were harvested for cardiac function, histological, redox status, and western blot analyses. The 50% CR from birth potentially reduced several cardiometabolic risk factors in 18-month-old rats. Moreover, compared with AL18, the CR18 group showed a ∼50% increase in cardiac contractility and relaxation, nearly three to five times less incidence of ventricular arrhythmia and fibrillation, ∼18% lower cardiomyocyte diameter, and ∼60% lower cardiac fibrosis. CR18 hearts also improved biomarkers of antioxidant defense and cell survival. Collectively, these results reveal several metabolic and cardiac antiaging effects of a 50% CR from birth in middle-aged rats.
Collapse
Affiliation(s)
- Dirceu de Sousa Melo
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Liliane Costa Pereira
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Carina Sousa Santos
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Bruno Ferreira Mendes
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Bruna Caroline Chaves Garcia
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ilkilene Pinheiro Queiroz
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Lauane Gomes Moreno
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ricardo Cardoso Cassilhas
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Elizabethe Adriana Esteves
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Etel Rocha Vieira
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Flávio de Castro Magalhães
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Ricardo Augusto Leoni De Sousa
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Kinulpe Honorato Sampaio
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Marco Fabrício Dias Peixoto
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| |
Collapse
|
4
|
Long-Term Impact of the Great Chinese Famine on the Risks of Specific Arrhythmias and Severe Hypertension in the Offspring at an Early Stage of Aging. J Pers Med 2023; 13:jpm13020163. [PMID: 36836398 PMCID: PMC9960876 DOI: 10.3390/jpm13020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Perinatal malnutrition affects postnatal cardiovascular functions. This study used the Great Chinese Famine (GCF) to determine the long-term impact of perinatal undernutrition on hypertension and arrhythmias in older offspring. Subjects (n = 10,065) were divided into an exposed group whose fetal life was in the GCF and an unexposed group. The exposed group showed higher systolic/diastolic pressure, heart rate, and total cholesterol. Perinatal exposure to the GCF was a significant risk to Grade 2 and Grade 3 hypertension (OR = 1.724, 95%CI: 1.441-2.064, p < 0.001; OR = 1.480, 95%CI: 1.050-2.086, p < 0.05) compared to the control. The GCF also increased risks for myocardial ischemia (OR = 1.301, 95%CI: 1.135-1.490, p < 0.001), bradycardia (OR = 1.383, 95%CI: 1.154-1.657, p < 0.001), atrial fibrillation (OR = 1.931, 95%CI: 1.033-3.610, p < 0.05), and atrioventricular block (OR = 1.333, 95%CI: 1.034-1.719, p < 0.05). Total cholesterol, diabetes, and metabolic syndrome were associated with Grade 2 or Grade 3 hypertension after exposure to the GCF; high cholesterol, high BMI, diabetes, metabolic syndrome, and elevated blood pressure were linked to certain types of arrhythmias in exposed offspring. The results first demonstrated perinatal undernutrition was a significant risk factor for the development of Grade 2-3 hypertension and certain arrhythmias in humans. Perinatal undernutrition still significantly impacted cardiovascular systems of the aged offspring even 50 years after the GCF. The results also provided information to a specific population with a history of prenatal undernutrition for early prevention against cardiovascular diseases before aging.
Collapse
|
5
|
De Souza AMA, Almeida JFQ, Shults N, Ji H, Li J, Sandberg K. Susceptibility of female rats to cardiac arrhythmias following refeeding after severe food restriction. Biol Sex Differ 2022; 13:11. [PMID: 35292078 PMCID: PMC8922835 DOI: 10.1186/s13293-022-00419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Many studies have shown malnutrition and inadequate caloric consumption have adverse acute effects on cardiovascular structure and function. Methods To determine the adverse long term cardiovascular effects, we studied cardiac morphology and function in female (F) and male (M) severe food restricted rats 3 months after refeeding (sFR-Refed). Results Two weeks of a normal chow diet in which calories were reduced by 60% decreased body weight (BW) by approximately 15% in both sexes. Within 2 weeks of refeeding, no differences in BW were detected between CT and sFR-Refed groups. However, male rats gained almost 3 times more BW than the females over the 3-month refeeding period. Sex differences were also observed in cardiac pathology. Hearts from F-sFR-Refed rats exhibited more atrophy and less hypertrophy, while M-sFR-Refed rats predominantly exhibited hypertrophic remodeling. While there were no differences in the frequency of ventricular arrhythmias induced by ischemia/reperfusion (I/R) in the isolated heart between M-CT and M-sFR-Refed rats, I/R induced twice as many arrhythmias in the F-sFR-Refed rats compared to F-CT. Conclusions These findings indicate the female heart is more susceptible to the long term adverse cardiovascular effects of sFR months after refeeding. Thus, this study provides a rationale for studying sex differences in cardiovascular risk in individuals who experience sFR for voluntary (e.g., very low-calorie dieting) or involuntary (e.g., poverty) reasons earlier in life. What are the long-term effects of a 2-week period of severe food restriction (sFR) on cardiac structure and function months after refeeding (sFR-Refed) in male and female rats? This study shows sex differences exist in cardiac pathology months after refeeding. A majority of cardiomyocytes were atrophied in F-sFR-Refed rats, while in M-sFR-Refed rats, the cardiomyocytes predominantly exhibited hypertrophic remodeling. While there were no differences in the frequency of ventricular arrhythmias induced by ischemia/reperfusion (I/R) in the isolated heart between M-CT and M-sFR-Refed rats, I/R induced twice as many arrhythmias in the F-sFR-Refed rats compared to the controls. Our findings have implications for the long-term risk of developing cardiovascular disease in individuals who have voluntarily or involuntarily experienced periods of sFR earlier in their lives, and that woman may be at greater cardiovascular risk than men.
Collapse
Affiliation(s)
- Aline M A De Souza
- Department of Medicine, Georgetown University, Suite 232 Building D, 4000 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Jonathas F Q Almeida
- Department of Internal Medicine/Cardiology, Rush University, Chicago, IL, 60612, USA
| | - Nataliia Shults
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Hong Ji
- Department of Medicine, Georgetown University, Suite 232 Building D, 4000 Reservoir Road, NW, Washington, DC, 20057, USA
| | - James Li
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC, USA
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Suite 232 Building D, 4000 Reservoir Road, NW, Washington, DC, 20057, USA.
| |
Collapse
|
6
|
Savencu CE, Linţa A, Farcaş G, Bînă AM, Creţu OM, Maliţa DC, Muntean DM, Sturza A. Impact of Dietary Restriction Regimens on Mitochondria, Heart, and Endothelial Function: A Brief Overview. Front Physiol 2022; 12:768383. [PMID: 34975524 PMCID: PMC8716834 DOI: 10.3389/fphys.2021.768383] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Caloric restriction (CR) and intermittent fasting (IF) are strategies aimed to promote health beneficial effects by interfering with several mechanisms responsible for cardiovascular diseases. Both dietary approaches decrease body weight, insulin resistance, blood pressure, lipids, and inflammatory status. All these favorable effects are the result of several metabolic adjustments, which have been addressed in this review, i.e., the improvement of mitochondrial biogenesis, the reduction of reactive oxygen species (ROS) production, and the improvement of cardiac and vascular function. CR and IF are able to modulate mitochondrial function via interference with dynamics (i.e., fusion and fission), respiration, and related oxidative stress. In the cardiovascular system, both dietary interventions are able to improve endothelium-dependent relaxation, reduce cardiac hypertrophy, and activate antiapoptotic signaling cascades. Further clinical studies are required to assess the long-term safety in the clinical setting.
Collapse
Affiliation(s)
- Cristina Elena Savencu
- Faculty of Dentistry, Department of Dental Prostheses Technology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Adina Linţa
- Faculty of Medicine, Department of Functional Sciences - Pathophysiology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania.,Faculty of Medicine, Centre for Translational Research and Systems Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Gianina Farcaş
- Faculty of Medicine, Department of Functional Sciences - Pathophysiology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania.,Faculty of Medicine, Centre for Translational Research and Systems Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Anca Mihaela Bînă
- Faculty of Medicine, Department of Functional Sciences - Pathophysiology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania.,Faculty of Medicine, Centre for Translational Research and Systems Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Octavian Marius Creţu
- Faculty of Medicine, Department of Surgery - Surgical Semiotics I, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania.,Faculty of Medicine, Centre for Hepato-Biliary and Pancreatic Surgery, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Daniel Claudiu Maliţa
- Faculty of Medicine, Department of Radiology and Medical Imagistics, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Danina Mirela Muntean
- Faculty of Medicine, Department of Functional Sciences - Pathophysiology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania.,Faculty of Medicine, Centre for Translational Research and Systems Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Adrian Sturza
- Faculty of Medicine, Department of Functional Sciences - Pathophysiology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania.,Faculty of Medicine, Centre for Translational Research and Systems Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
7
|
de Souza AMA, Ecelbarger CM, Sandberg K. Caloric Restriction and Cardiovascular Health: the Good, the Bad, and the Renin-Angiotensin System. Physiology (Bethesda) 2021; 36:220-234. [PMID: 34159807 DOI: 10.1152/physiol.00002.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Much excitement exists over the cardioprotective and life-extending effects of caloric restriction (CR). This review integrates population studies with experimental animal research to address the positive and negative impact of mild and severe CR on cardiovascular physiology and pathophysiology, with a particular focus on the renin-angiotensin system (RAS). We also highlight the gaps in knowledge and areas ripe for future physiological research.
Collapse
Affiliation(s)
- Aline M A de Souza
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Carolyn M Ecelbarger
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Kathryn Sandberg
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, District of Columbia
| |
Collapse
|
8
|
Two-year administration of sodium-glucose co-transporter 2 inhibitor brought about marked reduction of body fat independent of skeletal muscle amount or glycemic improvement in Japanese patients with type 2 diabetes. Diabetol Int 2021; 13:117-123. [DOI: 10.1007/s13340-021-00512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
|
9
|
Niemann B, Li L, Simm A, Molenda N, Kockskämper J, Boening A, Rohrbach S. Caloric restriction reduces sympathetic activity similar to beta-blockers but conveys additional mitochondrio-protective effects in aged myocardium. Sci Rep 2021; 11:1931. [PMID: 33479375 PMCID: PMC7820280 DOI: 10.1038/s41598-021-81438-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
Increased activation of sympathetic nervous system contributes to congestive heart failure (CHF) progression, and inhibition of sympathetic overactivation by beta-blockers is successful in CHF patients. Similarly, caloric restriction (CR) reduces sympathetic activity but mediates additional effects. Here, we compared the cardiac effects of CR (− 40% kcal, 3 months) with beta-blocker therapy (BB), diuretic medication (DF) or control diet in 18-months-old Wistar rats. We continuously recorded blood pressure, heart rate, body temperature and activity with telemetric devices and analysed cardiac function, activated signalling cascades and markers of apoptosis and mitochondrial biogenesis. During our study, left ventricular (LV) systolic function improved markedly (CR), mildly (BB) or even deteriorated (DF; control). Diastolic function was preserved by CR and BB but impaired by DF. CR reduced blood pressure identical to DF and BB and heart rate identical to BB. Plasma noradrenaline was decreased by CR and BB but increased by DF. Only CR reduced LV oxidative damage and apoptosis, induced AMPK and Akt phosphorylation and increased mitochondrial biogenesis. Thus, additive to the reduction of sympathetic activity, CR achieves protective effects on mitochondria and improves LV function and ROS damage in aged hearts. CR mechanisms may provide additional therapeutic targets compared to traditional CHF therapy.
Collapse
Affiliation(s)
- Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen and University Hospital Giessen and Marburg, Giessen, Germany.,Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ling Li
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany.,Centre of Medical Basic Research, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nicole Molenda
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Jens Kockskämper
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Andreas Boening
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen and University Hospital Giessen and Marburg, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany.
| |
Collapse
|
10
|
Almeida JFQ, Shults N, de Souza AMA, Ji H, Wu X, Woods J, Sandberg K. Short-term very low caloric intake causes endothelial dysfunction and increased susceptibility to cardiac arrhythmias and pathology in male rats. Exp Physiol 2020; 105:1172-1184. [PMID: 32410300 PMCID: PMC7496402 DOI: 10.1113/ep088434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023]
Abstract
New Findings What is the central question of this study? What are the effects of a 2 week period of severe food restriction on vascular reactivity of resistance arteries and on cardiac structure and function? What is the main finding and its importance? This study showed, for the first time, that a 2 week period of severe food restriction in adult male Fischer rats caused endothelial dysfunction in mesenteric arteries and increased the susceptibility to ischaemia–reperfusion‐induced arrhythmias and cardiac pathology. Our findings might have ramifications for cardiovascular risk in people who experience periods of inadequate caloric intake.
Abstract Severe food restriction (sFR) is a common dieting strategy for rapid weight loss. Male Fischer rats were maintained on a control (CT) or sFR (40% of CT food intake) diet for 14 days to mimic low‐calorie crash diets. The sFR diet reduced body weight by 16%. Haematocrits were elevated by 10% in the sFR rats, which was consistent with the reduced plasma volume. Mesenteric arteries from sFR rats had increased sensitivity to vasoconstrictors, including angiotensin II [maximum (%): CT, 1.30 ± 0.46 versus sFR, 11.5 ± 1.6; P < 0.0001; n = 7] and phenylephrine [maximum (%): CT, 78.5 ± 2.8 versus sFR, 94.5 ± 1.7; P < 0.001; n = 7] and reduced sensitivity to the vasodilator acetylcholine [EC50 (nm): CT, 49.2 ± 5.2 versus sFR, 71.6 ± 6.8; P < 0.05; n = 7]. Isolated hearts from sFR rats had a 1.7‐fold increase in the rate of cardiac arrhythmias in response to ischaemia–reperfusion and more cardiac pathology, including myofibrillar disarray with contractions and cardiomyocyte lysis, than hearts from CT rats. The sFR dietary regimen is similar to very low‐calorie commercial and self‐help weight‐loss programmes, which provide ∼800–1000 kcal day−1. Therefore, these findings in rats warrant the study of cardiovascular function in individuals who engage in extreme dieting or are subjected to bouts of very low caloric intake for other reasons, such as socioeconomic factors and natural disasters.
Collapse
Affiliation(s)
| | - Nataliia Shults
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | | | - Hong Ji
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Xie Wu
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - James Woods
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC, USA
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|