1
|
Bordoni B, Escher AR. Muscles and Central Neural Networks Involved in Breathing: State of the Art. Cureus 2025; 17:e80599. [PMID: 40091907 PMCID: PMC11910723 DOI: 10.7759/cureus.80599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2025] [Indexed: 03/19/2025] Open
Abstract
Breathing is a systemic act, which involves not only the lungs, but the entire body system. To have a comprehensive clinical picture, it is necessary to have all the patient's data; from this assumption, we can affirm that it is necessary to know all the muscles involved in breathing to understand how to obtain a comprehensive approach for the care and treatment of the patient to improve respiratory capacity. The text reviews the efferent connections of the respiratory centers and cites all the muscles that are involved in the mechanism of breathing and that are controlled and managed by the respiratory centers, starting from the muscular description of the cranial area, the bucco-cervical area, the cervicothoracic area, and the thoracic area. Knowing the function of the respiratory accessory muscles allows us to obtain, in some clinical cases, valuable data that can prove predictive of the diagnostic path of the pathology. This is the first article in the literature, to the authors' knowledge, that attempts to list and include in a single text all the muscles directly or indirectly involved in breathing. The goal of this narrative review article is to remind clinicians and researchers involved in the study of different muscular respiratory responses that we need to analyze and work all the skeletal musculature involved in breathing to better understand what happens in the pathological or physiological phases during breathing. This step will allow us to better individualize the therapeutic and training approach for healthy subjects.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, USA
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
2
|
Bordoni B, Escher AR, Toccafondi A, Mapelli L, Banfi P. Obstructive Sleep Apnea and Role of the Diaphragm. Cureus 2022; 14:e29004. [PMID: 36159353 PMCID: PMC9495286 DOI: 10.7759/cureus.29004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 11/07/2022] Open
Abstract
Obstructive sleep apnea (OSA) causes multiple local and systemic pathophysiological consequences, which lead to an increase in morbidity and mortality in patients suffering from this disorder. OSA presents with various nocturnal events of apnoeas or hypopneas and with sub-clinical airflow limitations during wakefulness. OSA involves a large percentage of the population, particularly men, but the estimate of OSA patients could be much broader than data from the literature. Most of the research carried out in the muscle field is to understand the causes of the presence of chronic nocturnal desaturation and focus on the genioglossus muscle and other muscles related to dilating the upper airways. Sparse research has been published regarding the diaphragm muscle, which is the main muscle structure to insufflate air into the airways. The article reviews the functional anatomy of the muscles used to open the upper respiratory tract and the non-physiological adaptation that follows in the presence of OSA, as well as the functional anatomy and pathological adaptive aspects of the diaphragm muscle. The intent of the text is to highlight the disparity of clinical interest between the dilator muscles and the diaphragm, trying to stimulate a broader approach to patient evaluation.
Collapse
|
3
|
Rodríguez Hermosa JL, Calle M, Guerassimova I, Fernández B, Montero VJ, Álvarez-Sala JL. Noninvasive electrical stimulation of oropharyngeal muscles in obstructive sleep apnea. Expert Rev Respir Med 2021; 15:1447-1460. [PMID: 34038311 DOI: 10.1080/17476348.2021.1935244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Continuous positive airway pressure (CPAP) therapy remains the standard treatment for obstructive sleep apnea. However, its proven effect is useless if the patient does not tolerate the treatment. The electrical stimulation approach has been investigated for several decades now and it seems that the implantable devices for invasive electrical stimulation of hypoglossal nerve are viewed as effective with some of them already approved for human use.Areas covered: in this review, we intent to summarize the existing records of noninvasive stimulation in sleep apnea to make the scientific community aware of the details before deciding on its future. We believe that this is a battle still to fight and more could be done bearing in mind the safety of this method.Expertopinion: noninvasive electrical stimulation has been left behind based on few, small and inconsistent studies using different stimulation parameters. These studies are difficult to compare and to draw conclusions.Electrical stimulation is a field for research in the treatment of obstructive sleep apnea, with many aspects still to be discovered, and which may become a therapeutic alternative to the use of CPAP in certain patients.
Collapse
Affiliation(s)
- Juan Luis Rodríguez Hermosa
- Pneumology Department. Hospital Clínico San Carlos. School of Medicine, Complutense University, Madrid, Spain
| | - Myriam Calle
- Pneumology Department. Hospital Clínico San Carlos. School of Medicine, Complutense University, Madrid, Spain
| | - Ina Guerassimova
- Pneumology Department. Hospital Clínico San Carlos. School of Medicine, Complutense University, Madrid, Spain
| | | | - Víctor Javier Montero
- Torytrans SL, Innovative and technological-based company, Almagro, Ciudad Real, Spain
| | - José Luis Álvarez-Sala
- Pneumology Department. Hospital Clínico San Carlos. School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
4
|
Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders. Sleep Med 2020; 71:113-121. [PMID: 32173186 DOI: 10.1016/j.sleep.2020.01.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 01/08/2023]
|
5
|
Chronic Intermittent Hypoxia Induces the Long-Term Facilitation of Genioglossus Corticomotor Activity. Can Respir J 2018; 2018:5941429. [PMID: 29849832 PMCID: PMC5937571 DOI: 10.1155/2018/5941429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by the repetitive collapse of the upper airway and chronic intermittent hypoxia (CIH) during sleep. It has been reported that CIH can increase the EMG activity of genioglossus in rats, which may be related to the neuromuscular compensation of OSA patients. This study aimed to explore whether CIH could induce the long-term facilitation (LTF) of genioglossus corticomotor activity. 16 rats were divided into the air group (n=8) and the CIH group (n=8). The CIH group was exposed to hypoxia for 4 weeks; the air group was subjected to air under identical experimental conditions in parallel. Transcranial magnetic stimulation (TMS) was applied every ten minutes and lasted for 1 h/day on the 1st, 3rd, 7th, 14th, 21st, and 28th days of air/CIH exposure. Genioglossus EMG was also recorded at the same time. Compared with the air group, the CIH group showed decreased TMS latency from 10 to 60 minutes on the 7th, 14th, 21st, and 28th days. The increased TMS amplitude lasting for 60 minutes was only observed on the 21st day. Genioglossus EMG activity increased only on the 28th day of CIH. We concluded that CIH could induce LTF of genioglossus corticomotor activity in rats.
Collapse
|
6
|
Rousseau E, Melo-Silva CA, Gakwaya S, Sériès F. Effects of repetitive transcranial magnetic stimulation of upper airway muscles during sleep in obstructive sleep apnea patients. J Appl Physiol (1985) 2016; 121:1217-1225. [DOI: 10.1152/japplphysiol.00487.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that stimulating the genioglossus by repetitive transcranial magnetic stimulation (rTMS) during the ascendant portion of the inspiratory flow of airflow-limited breaths would sustain the recruitment of upper airway dilator muscles over time and improve airway dynamics without arousing obstructive sleep apnea (OSA) patients. In a cross-sectional design, nine OSA patients underwent a rTMS trial during stable non-rapid eye movement (NREM) sleep. Submental muscle motor threshold (SUB) and motor-evoked potential were evaluated during wakefulness and sleep. During NREM sleep, maximal inspiratory flow, inspiratory volume, inspiratory time, shifts of electroencephalogram frequency, and pulse rate variability were assessed under three different stimulation paradigms completed at 1.2 sleep SUB stimulation output: 1) 5Hz-08 (stimulation frequency: 5 Hz; duration of train stimulation: 0.8 s); 2) 25Hz-02 (stimulation frequency: 25 Hz; duration of train stimulation: 0.2 s); and 3) 25Hz-04 (stimulation frequency: 25 Hz; duration of train stimulation: 0.4 s). SUB increased during NREM sleep (wakefulness: 23.8 ± 6.1%; NREM: 26.8 ± 5.2%; = 0.001). Two distinct airflow patterns were observed in response to rTMS: with and without initial airflow drops, without other airflow variables change regardless the stimulation paradigm applied. Finally, rTMS-induced cortical and/or autonomic arousal were observed in 36, 26, and 35% of all delivered rTMS trains during 5Hz-08, 25Hz-02, and 25Hz-04 stimulation paradigms, respectively. In conclusion, rTMS does not provide any airflow improvement of flow-limited breaths as seen with nonrepetitive TMS of upper airway dilator muscles. However, rTMS trains were free of arousals in the majority of cases.
Collapse
Affiliation(s)
- Eric Rousseau
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec City, Canada; and
| | - César Augusto Melo-Silva
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec City, Canada; and
- Laboratory of Respiratory Physiology, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Simon Gakwaya
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec City, Canada; and
| | - Frédéric Sériès
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec City, Canada; and
| |
Collapse
|
7
|
Rousseau E, Gakwaya S, Melo-Silva CA, Sériès F. Mechanical effects of repetitive transcranial magnetic stimulation of upper airway muscles in awake obstructive sleep apnoea subjects. Exp Physiol 2015; 100:566-76. [DOI: 10.1113/ep085005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Eric Rousseau
- Unité de recherche en pneumologie; Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Québec; QC Canada
| | - Simon Gakwaya
- Unité de recherche en pneumologie; Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Québec; QC Canada
| | - César Augusto Melo-Silva
- Unité de recherche en pneumologie; Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Québec; QC Canada
- Laboratory of Respiratory Physiology; University of Brasília - UnB; Brasília - DF Brazil
| | - Frédéric Sériès
- Unité de recherche en pneumologie; Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Québec; QC Canada
| |
Collapse
|
8
|
Melo-Silva CA, Gakwaya S, Rousseau E, Sériès F. Consecutive transcranial magnetic stimulation twitches reduce flow limitation during sleep in apnoeic patients. Exp Physiol 2013; 98:1366-75. [DOI: 10.1113/expphysiol.2013.073072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Melo-Silva CA, Borel JC, Gakwaya S, Sériès F. Acute upper airway muscle and inspiratory flow responses to transcranial magnetic stimulation during sleep in apnoeic patients. Exp Physiol 2013; 98:946-56. [DOI: 10.1113/expphysiol.2012.070359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Jeran J, Koritnik B, Zidar I, Belič A, Zidar J. Sniffing-related motor cortical potential: topography and possible generators. Respir Physiol Neurobiol 2012; 185:249-56. [PMID: 23078972 DOI: 10.1016/j.resp.2012.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022]
Abstract
This study estimated the whole-scalp topography and possible generators of the cortical potential associated with volitional self-paced inspirations (sniffs). In 17 healthy subjects we recorded a 32-channel electroencephalogram (EEG) during sniffing, for comparison during finger flexions. We averaged the EEG with respect to movement onset, and performed current source density and principal component analysis on the grand averaged data. We identified an early negative sniffing-related cortical potential starting ∼1.5s before movement at the vertex, which, in its time-course and dipole orientation, closely resembled Bereitshaftspotential preceding finger flexions. Around the movement onset, its topography became unique with three negative current sources: one at the vertex, and two bilaterally over the fronto-temporal derivations. We conclude that sequential cortical activation in preparation for sniffing is similar to other volitional movements. The current sources at sniff onset at the vertex likely reflect somatotopic motor representation of the diaphragm, neck and intercostal muscles, whereas current sources over fronto-temporal derivations likely reflect the somatotopic representation of the orofacial muscles.
Collapse
Affiliation(s)
- Judita Jeran
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
11
|
Melo-Silva CA, Borel JC, Gakwaya S, Sériès F. Assessment of upper airway dynamics by anterior magnetic phrenic stimulation in conscious sleep apnea patients. J Appl Physiol (1985) 2012; 112:1345-52. [DOI: 10.1152/japplphysiol.01542.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phrenic nerve magnetic stimulation (PNMS) performed anterolaterally at the base of the neck (BAMPS) and cervical magnetic stimulation are common techniques for assessing upper airway (UA) mechanical properties in conscious humans. We considered that if NMS performed at the sternal level (a-MS) could induce a similar percentage of flow-limited twitches as BAMPS in conscious subjects, gauging UA dynamic properties by PNMS would be simplified. Instantaneous flow, pharyngeal and esophageal pressures, as well as thoraco-abdominal motion were recorded in 10 conscious sleep apnea patients. BAMPS and a-MS were applied at end expiration. The percentage of flow-limited twitches, maximal tolerated intensity, and minimal stimulator output associated with flow-limited twitches were similar between BAMPS and a-MS. Examining the effects of stimulation site, stimulation intensity and site*intensity interaction on the characteristics of flow-limited twitches, the former was responsible for more negative peak esophageal pressure (BAMPS: −11.5 ± 0.9 cmH2O; a-MS: −6.5 ± 1.1 cmH2O; P = 0.002) and UA closing pressure (BAMPS: −7.7 ± 0.5 cmH2O; a-MS: −5.8 ± 0.6 cmH2O; P = 0.02) as well as for lower mean linear upper airway resistance (UAR) (BAMPS 3.5 ± 0.4 cmH2O·l−1·s−1; a-MS 2.2 ± 0.4 cmH2O·l−1·s−1; P = 0.02). a-MS systematically evoked outward/inward thoracic displacement, although this movement pattern was observed in only 50% of patients when they were subjected to BAMPS. Linear UAR of BAMPS-induced flow-limited twitches was lower in the presence of initial outward thoracic movement (2 ± 0.05 cmH2O·l−1·s−1) than with inward motion (4.3 ± 1.5 cmH2O·l−1·s−1; P = 0.03). We conclude that a-MS represents a practical and functional technique to evaluate UA mechanical properties in conscious sleep apnea patients.
Collapse
Affiliation(s)
- César Augusto Melo-Silva
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, Canada; and
- Laboratory of Respiratory Physiology, University of Brasília-UnB, Brasília, Brazil
| | - Jean-Christian Borel
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Simon Gakwaya
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, Canada; and
| | - Frédéric Sériès
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, Canada; and
| |
Collapse
|
12
|
Borel JC, Melo-Silva CA, Gakwaya S, Sériès F. Influence of CO2 on upper airway muscles and chest wall/diaphragm corticomotor responses assessed by transcranial magnetic stimulation in awake healthy subjects. J Appl Physiol (1985) 2012; 112:798-805. [DOI: 10.1152/japplphysiol.00713.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rationale: functional interaction between upper airway (UA) dilator muscles and the diaphragm is crucial in the maintenance of UA patency. This interaction could be altered by increasing respiratory drive. The aim of our study was to compare the effects of hypercapnic stimulation on diaphragm and genioglossus corticomotor responses to transcranial magnetic stimulation (TMS). Methods: 10 self-reported healthy men (32 ± 9 yr; body mass index = 24 ± 3 kg/m−2) breathed, in random order, room air or 5% and then 7% FiCO2, both balanced with pure O2. Assessments included ventilatory variables, isoflow UA resistance (at 300 ml/s), measurement of lower chest wall/diaphragm (LCW/diaphragm), and genioglossus motor threshold (MT) and motor-evoked potential (MEP) characteristics. TMS twitches were applied during early inspiration and end expiration at stimulation intensity 30% above LCW/diaphragm and genioglossus MT. Results: compared with room air, CO2 inhalation significantly augmented minute ventilation, maximal inspiratory flow, tidal volume, and tidal volume/respiratory time ratio. UA resistance was unchanged with CO2 inhalation. During 7% CO2 breathing, LCW/diaphragm MT decreased by 9.6 ± 10.1% whereas genioglossus MT increased by 7.2 ± 9%. CO2-induced ventilatory stimulation led to elevation of LCW/diaphragm MEP amplitudes during inspiration but not during expiration. LCW/diaphragm MEP latencies remained unaltered both during inspiration and expiration. Genioglossus MEP latencies and amplitudes were unchanged with CO2. Conclusion: in awake, healthy subjects, CO2-induced hyperventilation is associated with heightened LCW/diaphragm corticomotor activation without modulating genioglossus MEP responses. This imbalance may promote UA instability during increased respiratory drive.
Collapse
Affiliation(s)
- Jean-Christian Borel
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Cesar Augusto Melo-Silva
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Simon Gakwaya
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Frédéric Sériès
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
13
|
WANG W, KANG J, KONG D. The central motor conductivity of genioglossus in obstructive sleep apnoea. Respirology 2010; 15:1209-14. [DOI: 10.1111/j.1440-1843.2010.01858.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Influence of topical anaesthesia on the corticomotor response to tongue training. Arch Oral Biol 2009; 54:696-704. [DOI: 10.1016/j.archoralbio.2009.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/04/2009] [Accepted: 04/13/2009] [Indexed: 11/21/2022]
|