1
|
Tarassova O, Jiang Y, Wallin H, Jensen-Urstad M, Drca N, Röja J, Pontén M, Katz A, Nilsson J, Ekblom MM, Moberg M. Arterial-venous differences of brain-derived neurotrophic factor isoforms across the brain and muscle after exercise at different intensities. J Physiol 2025. [PMID: 40221889 DOI: 10.1113/jp288409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 04/15/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for neuroplasticity. Exercise can induce increases in forearm venous plasma and serum BDNF, often assumed to be indicative of release from the brain. We investigated the effects of exercise on circulating levels of mature BDNF (mBDNF) and its precursor proBDNF. Sixteen healthy, physically fit adults (20-40 years old) cycled for 20 min at 40, 60 and 80% ofV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ , separated by 30 min of rest. BDNF was analysed in blood samples from the brachial artery, internal jugular vein, femoral vein and antecubital vein. Brain/skeletal muscle exchange of BDNF, calculated as arterial-venous differences in BDNF multiplied by blood flow in the middle cerebral artery/common femoral artery, was measured simultaneously with blood sampling. Exercise intensity-dependent increases were observed in blood platelet count, forearm venous serum mBDNF and plasma proBDNF, but not in forearm venous plasma mBDNF. Brain release (or uptake) was not detected for either plasma mBDNF, serum mBDNF or plasma proBDNF. However, muscle uptake of plasma mBDNF and release of plasma proBDNF were observed after high-intensity exercise. Our findings demonstrate that exercise-dependent increases in serum mBDNF are not derived from the brain or the exercised skeletal muscle. Rather, the source of the increase appears to be the increase in platelets that are enriched with mBDNF. Furthermore, in physically fit adults, BDNF is not released from the brain into the bloodstream, after exercise, regardless of exercise intensity. Finally, changes in plasma proBDNF after exercise appear to be dependent on exercised skeletal muscle rather than brain release. KEY POINTS: Previously shown exercise-induced increases in forearm venous brain-derived neurotrophic factor (BDNF) are often assumed to be indicative of release from the brain. We investigated whether exercise-induced changes in forearm venous mature BDNF (mBDNF) and precursor proBDNF are paralleled by concomitant changes in BDNF exchange over the brain and skeletal muscle. We observed exercise intensity-dependent increases in platelet count, forearm venous serum mBDNF and plasma proBDNF, but not in forearm venous plasma mBDNF. We found muscle uptake of plasma mBDNF and release of plasma proBDNF after high-intensity exercise but no exercise intensity-dependent brain exchange of either plasma mBDNF, serum mBDNF or plasma proBDNF. Our findings suggest that acute exercise-induced increases in circulating serum mBDNF may be solely a result of increased platelet count, probably due to splenic platelet release; and that exercised skeletal muscle, and not the brain, responds to high-intensity exercise by releasing plasma proBDNF.
Collapse
Affiliation(s)
- Olga Tarassova
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Yiwen Jiang
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Helena Wallin
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Jensen-Urstad
- Department of Cardiology, Karolinska University Hospital and Heart and Lung Disease Unit, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nikola Drca
- Department of Cardiology, Karolinska University Hospital and Heart and Lung Disease Unit, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Röja
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Marjan Pontén
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Abram Katz
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Jonna Nilsson
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Maria M Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| |
Collapse
|
2
|
Belbis MD, Yap Z, Hobart SE, Ferguson SK, Hirai DM. Effects of acute phosphodiesterase type 5 inhibition on skeletal muscle interstitial PO 2 during contractions and recovery. Nitric Oxide 2024; 142:16-25. [PMID: 37979932 DOI: 10.1016/j.niox.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
The oxygen partial pressure within the interstitial space (PO2is; mmHg) provides the driving force for oxygen diffusion into the myocyte thereby supporting oxidative phosphorylation. We tested the hypothesis that potentiation of the nitric oxide pathway with sildenafil (phosphodiesterase type 5 inhibitor) would enhance PO2is during muscle metabolic transitions, thereby slowing PO2is on- and accelerating PO2is off-kinetics. The rat spinotrapezius muscle (n = 17) was exposed for PO2is measurements via phosphorescence quenching under control (CON), low-dose sildenafil (1 mg/kg i.a., SIL1) and high-dose sildenafil (7 mg/kg i.a., SIL7). Data were collected at rest and during submaximal twitch contractions (1 Hz, 4-6 V, 3 min) and recovery (3 min). Mean arterial blood pressure (MAP; mmHg) was reduced with both SIL1 (pre:132 ± 5; post:99 ± 5) and SIL7 (pre:111 ± 6; post:99 ± 4) (p < 0.05). SIL7 elevated resting PO2is (18.4 ± 1.1) relative to both CON (15.7 ± 0.7) and SIL1 (15.2 ± 0.7) (p < 0.05). In addition, SIL7 increased end-recovery PO2is (17.7 ± 1.6) compared to CON (12.8 ± 0.9) and SIL1 (13.4 ± 0.8) (p < 0.05). The overall PO2is response during recovery (i.e., area under the PO2is curve) was greater in SIL7 (4107 ± 444) compared to CON (3493 ± 222) and SIL1 (3114 ± 205 mmHg s) (p < 0.05). Contrary to our hypothesis, there was no impact of acute SIL (1 or 7 mg/kg) on the speed of the PO2is response during contractions or recovery (p > 0.05). However, sildenafil lowered MAP and improved skeletal muscle interstitial oxygenation in healthy rats. Specifically, SIL7 enhanced PO2is at rest and during recovery from submaximal muscle contractions. Potentiation of the nitric oxide pathway with sildenafil enhances microvascular blood-myocyte O2 transport and is expected to improve repeated bouts of contractile activity.
Collapse
Affiliation(s)
- Michael D Belbis
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA; Department of Exercise Science, Aurora University, Aurora, IL, USA
| | - Zhen Yap
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Sara E Hobart
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Scott K Ferguson
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Mendelson AA, Erickson D, Villar R. The role of the microcirculation and integrative cardiovascular physiology in the pathogenesis of ICU-acquired weakness. Front Physiol 2023; 14:1170429. [PMID: 37234410 PMCID: PMC10206327 DOI: 10.3389/fphys.2023.1170429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Skeletal muscle dysfunction after critical illness, defined as ICU-acquired weakness (ICU-AW), is a complex and multifactorial syndrome that contributes significantly to long-term morbidity and reduced quality of life for ICU survivors and caregivers. Historically, research in this field has focused on pathological changes within the muscle itself, without much consideration for their in vivo physiological environment. Skeletal muscle has the widest range of oxygen metabolism of any organ, and regulation of oxygen supply with tissue demand is a fundamental requirement for locomotion and muscle function. During exercise, this process is exquisitely controlled and coordinated by the cardiovascular, respiratory, and autonomic systems, and also within the skeletal muscle microcirculation and mitochondria as the terminal site of oxygen exchange and utilization. This review highlights the potential contribution of the microcirculation and integrative cardiovascular physiology to the pathogenesis of ICU-AW. An overview of skeletal muscle microvascular structure and function is provided, as well as our understanding of microvascular dysfunction during the acute phase of critical illness; whether microvascular dysfunction persists after ICU discharge is currently not known. Molecular mechanisms that regulate crosstalk between endothelial cells and myocytes are discussed, including the role of the microcirculation in skeletal muscle atrophy, oxidative stress, and satellite cell biology. The concept of integrated control of oxygen delivery and utilization during exercise is introduced, with evidence of physiological dysfunction throughout the oxygen delivery pathway - from mouth to mitochondria - causing reduced exercise capacity in patients with chronic disease (e.g., heart failure, COPD). We suggest that objective and perceived weakness after critical illness represents a physiological failure of oxygen supply-demand matching - both globally throughout the body and locally within skeletal muscle. Lastly, we highlight the value of standardized cardiopulmonary exercise testing protocols for evaluating fitness in ICU survivors, and the application of near-infrared spectroscopy for directly measuring skeletal muscle oxygenation, representing potential advancements in ICU-AW research and rehabilitation.
Collapse
Affiliation(s)
- Asher A. Mendelson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dustin Erickson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rodrigo Villar
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Hirai DM, Craig JC, Colburn TD, Eshima H, Kano Y, Musch TI, Poole DC. Skeletal muscle interstitial Po 2 kinetics during recovery from contractions. J Appl Physiol (1985) 2019; 127:930-939. [PMID: 31369325 DOI: 10.1152/japplphysiol.00297.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The oxygen partial pressure in the interstitial space (Po2 is) drives O2 into the myocyte via diffusion, thus supporting oxidative phosphorylation. Although crucial for metabolic recovery and the capacity to perform repetitive tasks, the time course of skeletal muscle Po2 is during recovery from contractions remains unknown. We tested the hypothesis that Po2 is would recover to resting values and display considerable on-off asymmetry (fast on-, slow off-kinetics), reflective of asymmetric capillary hemodynamics. Microvascular Po2 (Po2 mv) was also evaluated to test the hypothesis that a significant transcapillary gradient (ΔPo2 = Po2 mv - Po2 is) would be sustained during recovery. Po2 mv and Po2 is (expressed in mmHg) were determined via phosphorescence quenching in the exposed rat spinotrapezius muscle during and after submaximal twitch contractions (n = 12). Po2 is rose exponentially (P < 0.05) from end-contraction (11.1 ± 5.1), such that the end-recovery value (17.9 ± 7.9) was not different from resting Po2 is (18.5 ± 8.1; P > 0.05). Po2 is off-kinetics were slower than on-kinetics (mean response time: 53.1 ± 38.3 versus 18.5 ± 7.3 s; P < 0.05). A significant transcapillary ΔPo2 observed at end-contraction (16.6 ± 7.4) was maintained throughout recovery (end-recovery: 18.8 ± 9.6; P > 0.05). Consistent with our hypotheses, muscle Po2 is recovered to resting values with slower off-kinetics compared with the on-transient in line with the on-off asymmetry for capillary hemodynamics. Maintenance of a substantial transcapillary ΔPo2 during recovery supports that the microvascular-interstitium interface provides considerable resistance to O2 transport. As dictated by Fick's law (V̇o2 = Do2 × ΔPo2), modulation of O2 flux (V̇o2) during recovery must be achieved via corresponding changes in effective diffusing capacity (Do2; mainly capillary red blood cell hemodynamics and distribution) in the face of unaltered ΔPo2.NEW & NOTEWORTHY Capillary blood-myocyte O2 flux (V̇o2) is determined by effective diffusing capacity (Do2; mainly erythrocyte hemodynamics and distribution) and microvascular-interstitial Po2 gradients (ΔPo2 = Po2 mv - Po2 is). We show that Po2 is demonstrates on-off asymmetry consistent with Po2 mv and erythrocyte kinetics during metabolic transitions. A substantial transcapillary ΔPo2 was preserved during recovery from contractions, indicative of considerable resistance to O2 diffusion at the microvascular-interstitium interface. This reveals that effective Do2 declines in step with V̇o2 during recovery, as per Fick's law.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana.,Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Hiroaki Eshima
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
5
|
Evidence of a metabolic reserve in the skeletal muscle of elderly people. Aging (Albany NY) 2017; 9:52-67. [PMID: 27824313 PMCID: PMC5310656 DOI: 10.18632/aging.101079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
Abstract
The purpose of the present study was to determine whether mitochondrial function is limited by O2 availability or the intrinsic capacity of mitochondria to synthesize ATP in elderly individuals. To this aim, we examined, in comparison to free-flow conditions (FF), the effect of superimposing reactive hyperemia (RH), induced by a period of brief ischemia during the last min of exercise, on O2 availability and mitochondrial function in the calf muscle. 12 healthy, untrained, elderly subjects performed dynamic plantar flexion exercise and phosphorus magnetic resonance spectroscopy (31P-MRS), near-infrared spectroscopy (NIRS), and Doppler ultrasound were used to assess muscle metabolism and peripheral hemodynamics. Limb blood flow [area under the curve (AUC), FF: 1.5±0.5L; RH: 3.2±1.1L, P<0.01] and convective O2 delivery (AUC, FF: 0.30±0.13L; RH: 0.64±0.29L, P<0.01) were significantly increased in RH in comparison to FF. RH was also associated with significantly higher capillary blood flow (P<0.05) and this resulted in a 33% increase in estimated peak mitochondrial ATP synthesis rate (FF: 24±11 mM.min−1; RH: 31±7 mM.min−1, P<0.05). These results document a hemodynamic reserve in the contracting calf muscle of the elderly accessible by superimposing reactive hyperemia. Furthermore, this increase in O2 availability enhanced mitochondrial function thus indicating a skeletal muscle metabolic reserve despite advancing age and low level of physical activity.
Collapse
|
6
|
Layec G, Hart CR, Trinity JD, Kwon OS, Rossman MJ, Broxterman RM, Le Fur Y, Jeong EK, Richardson RS. Oxygen delivery and the restoration of the muscle energetic balance following exercise: implications for delayed muscle recovery in patients with COPD. Am J Physiol Endocrinol Metab 2017; 313:E94-E104. [PMID: 28292763 PMCID: PMC6109703 DOI: 10.1152/ajpendo.00462.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) experience a delayed recovery from skeletal muscle fatigue following exhaustive exercise that likely contributes to their progressive loss of mobility. As this phenomenon is not well understood, this study sought to examine postexercise peripheral oxygen (O2) transport and muscle metabolism dynamics in patients with COPD, two important determinants of muscle recovery. Twenty-four subjects, 12 nonhypoxemic patients with COPD and 12 healthy subjects with a sedentary lifestyle, performed dynamic plantar flexion exercise at 40% of the maximal work rate (WRmax) with phosphorus magnetic resonance spectroscopy (31P-MRS), near-infrared spectroscopy (NIRS), and vascular Doppler ultrasound assessments. The mean response time of limb blood flow at the offset of exercise was significantly prolonged in patients with COPD (controls: 56 ± 27 s; COPD: 120 ± 87 s; P < 0.05). In contrast, the postexercise time constant for capillary blood flow was not significantly different between groups (controls: 49 ± 23 s; COPD: 51 ± 21 s; P > 0.05). The initial postexercise convective O2 delivery (controls: 0.15 ± 0.06 l/min; COPD: 0.15 ± 0.06 l/min) and the corresponding oxidative adenosine triphosphate (ATP) demand (controls: 14 ± 6 mM/min; COPD: 14 ± 6 mM/min) in the calf were not significantly different between controls and patients with COPD (P > 0.05). The phosphocreatine resynthesis time constant (controls: 46 ± 20 s; COPD: 49 ± 21 s), peak mitochondrial phosphorylation rate, and initial proton efflux were also not significantly different between groups (P > 0.05). Therefore, despite perturbed peripheral hemodynamics, intracellular O2 availability, proton efflux, and aerobic metabolism recovery in the skeletal muscle of nonhypoxemic patients with COPD are preserved following plantar flexion exercise and thus are unlikely to contribute to the delayed recovery from exercise in this population.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah;
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Oh-Sung Kwon
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Ryan M Broxterman
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Yann Le Fur
- Centre de Résonance Magnétique Biologique et Médicale, Aix-Marseille Universite, Centre National de la Recherche Scientifique, Marseille, France; and
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
7
|
Drescher U, Mookerjee S, Steegmanns A, Knicker A, Hoffmann U. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise. Respir Physiol Neurobiol 2017; 240:53-60. [PMID: 28215595 DOI: 10.1016/j.resp.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the effects of exercise velocity (60, 150, 240deg∙s-1) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO2) following high-intensity concentric-eccentric isokinetic exercise. METHODS Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t1/2) for oxygen uptake (V˙O2pulm), carbon dioxide output (V˙CO2pulm), and ventilation (V˙E). RESULTS Significant differences of the t1/2 values were identified between 60 and 150deg∙s-1. Significant differences in the t1/2 values were observed between V˙O2pulm and V˙CO2pulm and between V˙CO2pulm and V˙E. The time to attain the first avDO2-peak showed significant differences between arm and leg exercise. CONCLUSIONS The present study illustrates, that V˙O2pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O2pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases.
Collapse
Affiliation(s)
- U Drescher
- Institute of Physiology and Anatomy, Am Sportpark Müngersdorf 6, German Sport University Cologne, Cologne, 50933, Germany.
| | - S Mookerjee
- Department of Exercise Science, 400 E. 2nd St, Bloomsburg University, Bloomsburg, PA, 17815, USA
| | - A Steegmanns
- Institute of Physiology and Anatomy, Am Sportpark Müngersdorf 6, German Sport University Cologne, Cologne, 50933, Germany
| | - A Knicker
- Institute of Movement and Neuroscience, Am Sportpark Müngersdorf 6, German Sport University Cologne, Cologne, 50933, Germany
| | - U Hoffmann
- Institute of Physiology and Anatomy, Am Sportpark Müngersdorf 6, German Sport University Cologne, Cologne, 50933, Germany
| |
Collapse
|
8
|
Niemeijer VM, Spee RF, Schoots T, Wijn PFF, Kemps HMC. Limitations of skeletal muscle oxygen delivery and utilization during moderate-intensity exercise in moderately impaired patients with chronic heart failure. Am J Physiol Heart Circ Physiol 2016; 311:H1530-H1539. [DOI: 10.1152/ajpheart.00474.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/28/2016] [Indexed: 11/22/2022]
Abstract
The extent and speed of transient skeletal muscle deoxygenation during exercise onset in patients with chronic heart failure (CHF) are related to impairments of local O2 delivery and utilization. This study examined the physiological background of submaximal exercise performance in 19 moderately impaired patients with CHF (Weber class A, B, and C) compared with 19 matched healthy control (HC) subjects by measuring skeletal muscle oxygenation (SmO2) changes during cycling exercise. All subjects performed two subsequent moderate-intensity 6-min exercise tests (bouts 1 and 2) with measurements of pulmonary oxygen uptake kinetics and SmO2 using near-infrared spatially resolved spectroscopy at the vastus lateralis for determination of absolute oxygenation values, amplitudes, kinetics (mean response time for onset), and deoxygenation overshoot characteristics. In CHF, deoxygenation kinetics were slower compared with HC (21.3 ± 5.3 s vs. 16.7 ± 4.4 s, P < 0.05, respectively). After priming exercise (i.e., during bout 2), deoxygenation kinetics were accelerated in CHF to values no longer different from HC (16.9 ± 4.6 s vs. 15.4 ± 4.2 s, P = 0.35). However, priming did not speed deoxygenation kinetics in CHF subjects with a deoxygenation overshoot, whereas it did reduce the incidence of the overshoot in this specific group ( P < 0.05). These results provide evidence for heterogeneity with respect to limitations of O2 delivery and utilization during moderate-intensity exercise in patients with CHF, with slowed deoxygenation kinetics indicating a predominant O2 utilization impairment and the presence of a deoxygenation overshoot, with a reduction after priming in a subgroup, indicating an initial O2 delivery to utilization mismatch.
Collapse
Affiliation(s)
- Victor M. Niemeijer
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Ruud F. Spee
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Thijs Schoots
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Pieter F. F. Wijn
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; and
- Department of Medical Physics, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Hareld M. C. Kemps
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| |
Collapse
|
9
|
Kruse NT, Scheuermann BW. Effect of self-administered stretching on NIRS-measured oxygenation dynamics. Clin Physiol Funct Imaging 2014; 36:126-33. [DOI: 10.1111/cpf.12205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/24/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Nicholas T. Kruse
- Cardiopulmonary and Metabolism Research Laboratory; Department of Kinesiology; University of Toledo; Toledo OH USA
| | - Barry W. Scheuermann
- Cardiopulmonary and Metabolism Research Laboratory; Department of Kinesiology; University of Toledo; Toledo OH USA
| |
Collapse
|
10
|
Layec G, Haseler LJ, Trinity JD, Hart CR, Liu X, Le Fur Y, Jeong EK, Richardson RS. Mitochondrial function and increased convective O2 transport: implications for the assessment of mitochondrial respiration in vivo. J Appl Physiol (1985) 2013; 115:803-11. [PMID: 23813526 DOI: 10.1152/japplphysiol.00257.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although phosphorus magnetic resonance spectroscopy (31P-MRS)-based evidence suggests that in vivo peak mitochondrial respiration rate in young untrained adults is limited by the intrinsic mitochondrial capacity of ATP synthesis, it remains unknown whether a large, locally targeted increase in convective O2 delivery would alter this interpretation. Consequently, we examined the effect of superimposing reactive hyperemia (RH), induced by a period of brief ischemia during the last minute of exercise, on oxygen delivery and mitochondrial function in the calf muscle of nine young adults compared with free-flow conditions (FF). To this aim, we used an integrative experimental approach combining 31P-MRS, Doppler ultrasound imaging, and near-infrared spectroscopy. Limb blood flow [area under the curve (AUC), 1.4 ± 0.8 liters in FF and 2.5 ± 0.3 liters in RH, P < 0.01] and convective O2 delivery (AUC, 0.30 ± 0.16 liters in FF and 0.54 ± 0.05 liters in RH, P < 0.01), were significantly increased in RH compared with FF. RH was also associated with significantly higher capillary blood flow (P < 0.05) and faster tissue reoxygenation mean response times (70 ± 15 s in FF and 24 ± 15 s in RH, P < 0.05). This resulted in a 43% increase in estimated peak mitochondrial ATP synthesis rate (29 ± 13 mM/min in FF and 41 ± 14 mM/min in RH, P < 0.05) whereas the phosphocreatine (PCr) recovery time constant in RH was not significantly different (P = 0.22). This comprehensive assessment of local skeletal muscle O2 availability and utilization in untrained subjects reveals that mitochondrial function, assessed in vivo by 31P-MRS, is limited by convective O2 delivery rather than an intrinsic mitochondrial limitation.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lador F, Tam E, Adami A, Kenfack MA, Bringard A, Cautero M, Moia C, Morel DR, Capelli C, Ferretti G. Cardiac output, O2 delivery and kinetics during step exercise in acute normobaric hypoxia. Respir Physiol Neurobiol 2013; 186:206-13. [DOI: 10.1016/j.resp.2013.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/28/2022]
|
12
|
Belfry GR, Paterson DH, Murias JM, Thomas SG. The effects of short recovery duration on VO2 and muscle deoxygenation during intermittent exercise. Eur J Appl Physiol 2011; 112:1907-15. [PMID: 21927832 DOI: 10.1007/s00421-011-2152-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/25/2011] [Indexed: 11/28/2022]
Abstract
This study compared the oxygen uptake (VO(2)) and muscle deoxygenation (∆HHb) of two intermittent protocols to responses during continuous constant load cycle exercise in males (24 year ± 2, n = 7). Subjects performed three protocols: (1) 10 s work/5 s active recovery (R), R at 20 W (INT1): (2) 10 s work/5 s R, R at moderate intensity (INT2); and (3) continuous exercise (CONT), all for 10 min, on separate days. The work rate of CONT and the 10 s work of INT1 and INT2 were set within the heavy intensity domain. VO(2) and ∆HHb data were filtered and averaged to 5 s bins. Average VO(2) (80-420 s) was highest during CONT (3.77 L/min), lower in INT2 (3.04 L/min), and lowest during INT1 (2.81 L/min), all (p < 0.05). Average ∆HHb (80-420 s) was higher during CONT (p < 0.05) than both INT exercise protocols (CONT; 25.7 ± 0.9 a.u. INT1; 16.4 ± 0.8 a.u., and INT2; 15.8 ± 0.8 a.u.). The repeated changes in metabolic rate elicited oscillations in ΔHHb in both intermittent protocols, whereas oscillations in VO(2) were only observed during INT1. The greater ΔHHb during CONT suggests a reduction in oxygen delivery compared to oxygen consumption relative to INT. The higher VO(2) for INT 2 versus INT 1 and similar ΔHHb during INT suggests an increase in oxygen delivery during INT 2. Thus the different demands of INT1, INT2, and CONT protocols elicited differing physiological responses to a similar heavy intensity power output. These intermittent exercise models seem to elicit an elevated O(2) delivery condition compared to CONT.
Collapse
Affiliation(s)
- Glen R Belfry
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, Thames Hall, London, ON N6A 3K7, Canada.
| | | | | | | |
Collapse
|
13
|
Bravo DM, Gimenes AC, Nascimento RB, Ferreira EVM, Siqueira ACB, Meda EDS, Neder JA, Nery LE. Skeletal muscle reoxygenation after high-intensity exercise in mitochondrial myopathy. Eur J Appl Physiol 2011; 112:1763-71. [PMID: 21898145 DOI: 10.1007/s00421-011-2136-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 08/16/2011] [Indexed: 11/29/2022]
Abstract
This study addressed whether O(2) delivery during recovery from high-intensity, supra-gas exchange threshold exercise would be matched to O(2) utilization at the microvascular level in patients with mitochondrial myopathy (MM). Off-exercise kinetics of (1) pulmonary O(2) uptake VO(2P) (2) an index of fractional O(2) extraction by near-infrared spectroscopy (Δ[deoxy-Hb + Mb]) in the vastus lateralis and (3) cardiac output (Q'(T)) by impedance cardiography were assessed in 12 patients with biopsy-proven MM (chronic progressive external ophthalmoplegia) and 12 age- and gender-matched controls. Kinetics of VO(2P) were significantly slower in patients than controls (τ = 53.8 ± 16.5 vs. 38.8 ± 7.6 s, respectively; p < 0.05). Q'(T), however, declined at similar rates (τ = 64.7 ± 18.8 vs. 73.0 ± 21.6 s; p > 0.05) being typically slower than [Formula: see text] in both groups. Importantly, Δ[deoxy-Hb + Mb] dynamics (MRT) were equal to, or faster than, τVO(2P) in patients and controls, respectively. In fact, there were no between-group differences in τVO(2P)MRTΔ[deoxy-Hb + Mb] (1.1 ± 0.4 vs. 1.0 ± 0.2, p > 0.05) thereby indicating similar rates of microvascular O(2) delivery. These data indicate that the slower rate of recovery of muscle metabolism after high-intensity exercise is not related to impaired microvascular O(2) delivery in patients with MM. This phenomenon, therefore, seems to reflect the intra-myocyte abnormalities that characterize this patient population.
Collapse
Affiliation(s)
- Daniela M Bravo
- Division of Respiratory Medicine, Department of Medicine, Pulmonary Function and Clinical Exercise Physiology Unit, Federal University of Sao Paulo, Paulista School of Medicine, Rua Botucatu, 740 3rd floor, Vila Clementino, Sao Paulo, Sao Paulo CEP 04023-062, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Behnke BJ, Ferreira LF, McDonough PJ, Musch TI, Poole DC. Recovery dynamics of skeletal muscle oxygen uptake during the exercise off-transient. Respir Physiol Neurobiol 2009; 168:254-60. [PMID: 19619675 DOI: 10.1016/j.resp.2009.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 11/26/2022]
Abstract
UNLABELLED The time course of muscle .V(O2) recovery from contractions (i.e., muscle .V(O2) off-kinetics), measured directly at the site of O(2) exchange, i.e., in the microcirculation, is unknown. Whereas biochemical models based upon creatine kinase flux rates predict slower .V(O2) off- than on-transients [Kushmerick, M.J., 1998. Comp. Biochem. Physiol. B: Biochem. Mol. Biol.], whole muscle .V(O2) data [Krustrup, et al. J. Physiol.] suggest on-off symmetry. PURPOSE We tested the hypothesis that the slowed recovery blood flow (Qm) kinetics profile in the spinotrapezius muscle [Ferreira et al., 2006. J. Physiol.] was associated with a slowed muscle .V(O2) recovery compared with that seen at the onset of contractions (time constant, tau approximately 23s, Behnke et al., 2002. Resp. Physiol.), i.e., on-off asymmetry. METHODS Measurements of capillary red blood cell flux and microvascular pressure of O(2) (P(O2) mv) were combined to resolve the temporal profile of muscle .V(O2) across the moderate intensity contractions-to-rest transition. RESULTS Muscle .V(O2) decreased from an end-contracting value of 7.7+/-0.2 ml/100 g/min to 1.7+/-0.1 ml/100g/min at the end of the 3 min recovery period, which was not different from pre-stimulation .V(O2). Contrary to our hypothesis, muscle .V(O2) in recovery began to decrease immediately (i.e., time delay <2s) and demonstrated rapid first-order kinetics (tau, 25.5+/-2.6s) not different (i.e., symmetrical to) to those during the on-transient. This resulted in a systematic increase in microvascular P(O2) during the recovery from contractions. CONCLUSIONS The slowed Qm kinetics in recovery serves to elevate the Qm/.V(O2) ratio and thus microvascular P(O2) . Whether this Qm response is obligatory to the rapid muscle .V(O2) kinetics and hence speeds the repletion of high-energy phosphates by maximizing conductive and diffusive O(2) flux is an important question that awaits resolution.
Collapse
Affiliation(s)
- Brad J Behnke
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|