1
|
Halvorson BD, Bao Y, Singh KK, Frisbee SJ, Hachinski V, Whitehead SN, Melling CWJ, Chantler PD, Goldman D, Frisbee JC. Thromboxane-induced cerebral microvascular rarefaction predicts depressive symptom emergence in metabolic disease. J Appl Physiol (1985) 2024; 136:122-140. [PMID: 37969083 PMCID: PMC11551004 DOI: 10.1152/japplphysiol.00410.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023] Open
Abstract
Previous studies have suggested that the loss of microvessel density in the peripheral circulation with evolving metabolic disease severity represents a significant contributor to impaired skeletal muscle oxygenation and fatigue-resistance. Based on this and our recent work, we hypothesized that cerebral microvascular rarefaction was initiated from the increased prooxidant and proinflammatory environment with metabolic disease and is predictive of the severity of the emergence of depressive symptoms in obese Zucker rats (OZRs). In male OZR, cerebrovascular rarefaction followed the emergence of elevated oxidant and inflammatory environments characterized by increased vascular production of thromboxane A2 (TxA2). The subsequent emergence of depressive symptoms in OZR was associated with the timing and severity of the rarefaction. Chronic intervention with antioxidant (TEMPOL) or anti-inflammation (pentoxifylline) therapy blunted the severity of rarefaction and depressive symptoms, although the effectiveness was limited. Blockade of TxA2 production (dazmegrel) or action (SQ-29548) resulted in a stronger therapeutic effect, suggesting that vascular production and action represent a significant contributor to rarefaction and the emergence of depressive symptoms with chronic metabolic disease (although other pathways clearly contribute as well). A de novo biosimulation of cerebrovascular oxygenation in the face of progressive rarefaction demonstrates the increased probability of generating hypoxic regions within the microvascular networks, which could contribute to impaired neuronal metabolism and the emergence of depressive symptoms. The results of the present study also implicate the potential importance of aggressive prodromic intervention in reducing the severity of chronic complications arising from metabolic disease.NEW & NOTEWORTHY With clinical studies linking vascular disease risk to depressive symptom emergence, we used obese Zucker rats, a model of chronic metabolic disease, to identify potential mechanistic links between these two negative outcomes. Depressive symptom severity correlated with the extent of cerebrovascular rarefaction, after increased vascular oxidant stress/inflammation and TxA2 production. Anti-TxA2 interventions prevasculopathy blunted rarefaction and depressive symptoms, while biosimulation indicated that cerebrovascular rarefaction increased hypoxia within capillary networks as a potential contributing mechanism.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Yuki Bao
- Department of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Krishna K Singh
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Vladimir Hachinski
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - C W James Melling
- Department of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, United States
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Halvorson BD, Menon NJ, Goldman D, Frisbee SJ, Goodwill AG, Butcher JT, Stapleton PA, Brooks SD, d'Audiffret AC, Wiseman RW, Lombard JH, Brock RW, Olfert IM, Chantler PD, Frisbee JC. The development of peripheral microvasculopathy with chronic metabolic disease in obese Zucker rats: a retrograde emergence? Am J Physiol Heart Circ Physiol 2022; 323:H475-H489. [PMID: 35904886 PMCID: PMC9448278 DOI: 10.1152/ajpheart.00264.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
The study of peripheral vasculopathy with chronic metabolic disease is challenged by divergent contributions from spatial (the level of resolution or specific tissue being studied) and temporal origins (evolution of the developing impairments in time). Over many years of studying the development of skeletal muscle vasculopathy and its functional implications, we may be at the point of presenting an integrated conceptual model that addresses these challenges within the obese Zucker rat (OZR) model. At the early stages of metabolic disease, where systemic markers of elevated cardiovascular disease risk are present, the only evidence of vascular dysfunction is at postcapillary and collecting venules, where leukocyte adhesion/rolling is elevated with impaired venular endothelial function. As metabolic disease severity and duration increases, reduced microvessel density becomes evident as well as increased variability in microvascular hematocrit. Subsequently, hemodynamic impairments to distal arteriolar networks emerge, manifesting as increasing perfusion heterogeneity and impaired arteriolar reactivity. This retrograde "wave of dysfunction" continues, creating a condition wherein deficiencies to the distal arteriolar, capillary, and venular microcirculation stabilize and impairments to proximal arteriolar reactivity, wall mechanics, and perfusion distribution evolve. This proximal arteriolar dysfunction parallels increasing failure in fatigue resistance, hyperemic responses, and O2 uptake within self-perfused skeletal muscle. Taken together, these results present a conceptual model for the retrograde development of peripheral vasculopathy with chronic metabolic disease and provide insight into the timing and targeting of interventional strategies to improve health outcomes.NEW & NOTEWORTHY Working from an established database spanning multiple scales and times, we studied progression of peripheral microvascular dysfunction in chronic metabolic disease. The data implicate the postcapillary venular endothelium as the initiating site for vasculopathy. Indicators of dysfunction, spanning network structures, hemodynamics, vascular reactivity, and perfusion progress in an insidious retrograde manner to present as functional impairments to muscle blood flow and performance much later. The silent vasculopathy progression may provide insight into clinical treatment challenges.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Nithin J Menon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Stephanie J Frisbee
- Department Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Adam G Goodwill
- Department of Integrative Medical Sciences, Northeastern Ohio Medical University, Rootstown, Ohio
| | - Joshua T Butcher
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Steven D Brooks
- Laboratory of Malaria and Vector Research, Physiology Unit, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | | | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert W Brock
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - I Mark Olfert
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Wong A, Chen SQ, Halvorson BD, Frisbee JC. Microvessel Density: Integrating Sex-Based Differences and Elevated Cardiovascular Risks in Metabolic Syndrome. J Vasc Res 2021; 59:1-15. [PMID: 34535606 DOI: 10.1159/000518787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex pathological state consisting of metabolic risk factors such as hypertension, insulin resistance, and obesity. The interconnectivity of cellular pathways within various biological systems suggests that each individual component of MetS may share common pathological sources. Additionally, MetS is closely associated with vasculopathy, including a reduction in microvessel density (MVD) (rarefaction) and elevated risk for various cardiovascular diseases. Microvascular impairments may contribute to perfusion-demand mismatch, where local metabolic needs are insufficiently met due to the lack of nutrient and oxygen supply, thus creating pathological positive-feedback loops and furthering the progression of disease. Sexual dimorphism is evident in these underlying cellular mechanisms, which places males and females at different levels of risk for cardiovascular disease and acute ischemic events. Estrogen exhibits protective effects on the endothelium of pre-menopausal women, while androgens may be antagonistic to cardiovascular health. This review examines MetS and its influences on MVD, as well as sex differences relating to the components of MetS and cardiovascular risk profiles. Finally, translational relevance and interventions are discussed in the context of these sex-based differences.
Collapse
Affiliation(s)
- Angelina Wong
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Shu Qing Chen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brayden D Halvorson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
5
|
Frisbee JC, Halvorson BD, Lewis MT, Wiseman RW. Shifted vascular optimization: the emergence of a new arteriolar behaviour with chronic metabolic disease. Exp Physiol 2020; 105:1431-1439. [PMID: 32045062 DOI: 10.1113/ep087871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/07/2020] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the topic of this review? Altered perfusion distribution at skeletal muscle arteriolar bifurcations and how this is modified by development of chronic metabolic disease. What advances does it highlight? The outcome created is a distribution of erythrocytes in the distal microcirculation that is characterized by increased spatial heterogeneity and reduced flexibility such that mass transport/exchange within the network is impaired, with limited ability to respond to imposed challenges. This advances our understanding of how altered vascular structure and function with metabolic disease impairs perfusion to skeletal muscle at a level of resolution that would not be identified through bulk flow responses. ABSTRACT This review is based on the presentation 'Shifted vascular optimization: the emergence of a new arteriolar behaviour with chronic metabolic disease', given at the Symposium 'Understanding Complex Behaviours in the Microcirculation: from Blood Flow to Oxygenation' during the Annual Meeting of the Physiological Society at the Aberdeen Exhibition and Conference Centre in Aberdeen, UK in July 2019. The past years of dedicated investigation on linkages between vascular (dys)function under conditions of elevated cardiovascular disease risk and tissue/organ performance have produced results and insights that frequently suffer from limited correlation and causation. Reaching out from this challenge, it was proposed that this may reflect a 'level of resolution' argument and that altered haemodynamic behaviour in vascular networks could be a stronger predictor of functional outcomes than higher resolution measures. Using this approach, we have determined that an attractor that describes the spatial and temporal shift in perfusion distribution at successive arteriolar bifurcations within the skeletal muscle is a strong predictor of functional outcomes within animals and provides novel insight into fundamental mechanistic contributors to altered patterns of intra-muscular perfusion. This article focuses on the applicability and utility of the attractor in models of cardiovascular and metabolic disease risk of increasing severity. We will also discuss the utility of the attractor in terms of understanding the effectiveness of aggressive interventions for reversing established vasculopathy and perfusion impairments.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Brayden D Halvorson
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, MI, USA.,Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Frisbee JC, Lewis MT, Kasper JD, Chantler PD, Wiseman RW. Type 2 diabetes mellitus in the Goto-Kakizaki rat impairs microvascular function and contributes to premature skeletal muscle fatigue. J Appl Physiol (1985) 2018; 126:626-637. [PMID: 30571284 DOI: 10.1152/japplphysiol.00751.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite extensive investigation into the impact of metabolic disease on vascular function and, by extension, tissue perfusion and organ function, interpreting results for specific risk factors can be complicated by the additional risks present in most models. To specifically determine the impact of type 2 diabetes without obesity on skeletal muscle microvascular structure/function and on active hyperemia with elevated metabolic demand, we used 17-wk-old Goto-Kakizaki (GK) rats to study microvascular function at multiple levels of resolution. Gracilis muscle arterioles demonstrated blunted dilation to acetylcholine (both ex vivo proximal and in situ distal arterioles) and elevated shear (distal arterioles only). All other alterations to reactivity appeared to reflect compromised endothelial function associated with increased thromboxane (Tx)A2 production and oxidant stress/inflammation rather than alterations to vascular smooth muscle function. Structural changes to the microcirculation of GK rats were confined to reduced microvessel density of ~12%, with no evidence for altered vascular wall mechanics. Active hyperemia with either field stimulation of in situ cremaster muscle or electrical stimulation via the sciatic nerve for in situ gastrocnemius muscle was blunted in GK rats, primarily because of blunted functional dilation of skeletal muscle arterioles. The blunted active hyperemia was associated with impaired oxygen uptake (V̇o2) across the muscle and accelerated muscle fatigue. Acute interventions to reduce oxidant stress (TEMPOL) and TxA2 action (SQ-29548) or production (dazmegrel) improved muscle perfusion, V̇o2, and muscle performance. These results suggest that type 2 diabetes mellitus in GK rats impairs skeletal muscle arteriolar function apparently early in the progression of the disease and potentially via an increased reactive oxygen species/inflammation-induced TxA2 production/action on network function as a major contributing mechanism. NEW & NOTEWORTHY The impact of type 2 diabetes mellitus on vascular structure/function remains an area lacking clarity. Using diabetic Goto-Kakizaki rats before the development of other risk factors, we determined alterations to vascular structure/function and skeletal muscle active hyperemia. Type 2 diabetes mellitus reduced arteriolar endothelium-dependent dilation associated with increased thromboxane A2 generation. Although modest microvascular rarefaction was evident, there were no other alterations to vascular structure/function. Skeletal muscle active hyperemia was blunted, although it improved after antioxidant or anti-thromboxane A2 treatment.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Medical Biophysics, Western University , London, Ontario , Canada
| | - Matthew T Lewis
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Robert W Wiseman
- Department of Physiology, Michigan State University , East Lansing, Michigan.,Department of Radiology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
7
|
Limberg JK, Morgan BJ, Schrage WG. Peripheral Blood Flow Regulation in Human Obesity and Metabolic Syndrome. Exerc Sport Sci Rev 2018; 44:116-22. [PMID: 27223271 DOI: 10.1249/jes.0000000000000083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jacqueline K Limberg
- 1Department of Anesthesiology, Mayo Clinic, Rochester, MN; and Departments of 2Kinesiology and 3Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI
| | | | | |
Collapse
|
8
|
Cree-Green M, Scalzo RL, Harrall K, Newcomer BR, Schauer IE, Huebschmann AG, McMillin S, Brown MS, Orlicky D, Knaub L, Nadeau KJ, McClatchey PM, Bauer TA, Regensteiner JG, Reusch JEB. Supplemental Oxygen Improves In Vivo Mitochondrial Oxidative Phosphorylation Flux in Sedentary Obese Adults With Type 2 Diabetes. Diabetes 2018; 67:1369-1379. [PMID: 29643061 PMCID: PMC6463751 DOI: 10.2337/db17-1124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with impaired exercise capacity. Alterations in both muscle perfusion and mitochondrial function can contribute to exercise impairment. We hypothesized that impaired muscle mitochondrial function in type 2 diabetes is mediated, in part, by decreased tissue oxygen delivery and would improve with oxygen supplementation. Ex vivo muscle mitochondrial content and respiration assessed from biopsy samples demonstrated expected differences in obese individuals with (n = 18) and without (n = 17) diabetes. Similarly, in vivo mitochondrial oxidative phosphorylation capacity measured in the gastrocnemius muscle via 31P-MRS indicated an impairment in the rate of ADP depletion with rest (27 ± 6 s [diabetes], 21 ± 7 s [control subjects]; P = 0.008) and oxidative phosphorylation (P = 0.046) in type 2 diabetes after isometric calf exercise compared with control subjects. Importantly, the in vivo impairment in oxidative capacity resolved with oxygen supplementation in adults with diabetes (ADP depletion rate 5.0 s faster, P = 0.012; oxidative phosphorylation 0.046 ± 0.079 mmol/L/s faster, P = 0.027). Multiple in vivo mitochondrial measures related to HbA1c These data suggest that oxygen availability is rate limiting for in vivo mitochondrial oxidative exercise recovery measured with 31P-MRS in individuals with uncomplicated diabetes. Targeting muscle oxygenation could improve exercise function in type 2 diabetes.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Center for Women's Health Research, Anschutz Medical Campus, Aurora, CO
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rebecca L Scalzo
- Center for Women's Health Research, Anschutz Medical Campus, Aurora, CO
- Division of Endocrinology and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kylie Harrall
- Center for Women's Health Research, Anschutz Medical Campus, Aurora, CO
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Irene E Schauer
- Center for Women's Health Research, Anschutz Medical Campus, Aurora, CO
- Division of Endocrinology and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Veterans Affairs Medical Center, Denver, CO
| | - Amy G Huebschmann
- Center for Women's Health Research, Anschutz Medical Campus, Aurora, CO
- Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shawna McMillin
- Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David Orlicky
- Division of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Leslie Knaub
- Division of Endocrinology and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kristen J Nadeau
- Center for Women's Health Research, Anschutz Medical Campus, Aurora, CO
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - P Mason McClatchey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Timothy A Bauer
- Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Judith G Regensteiner
- Center for Women's Health Research, Anschutz Medical Campus, Aurora, CO
- Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jane E B Reusch
- Center for Women's Health Research, Anschutz Medical Campus, Aurora, CO
- Veterans Affairs Medical Center, Denver, CO
- Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
9
|
McClatchey PM, Frisbee JC, Reusch JEB. A conceptual framework for predicting and addressing the consequences of disease-related microvascular dysfunction. Microcirculation 2018; 24. [PMID: 28135021 DOI: 10.1111/micc.12359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE A growing body of evidence indicates that impaired microvascular perfusion plays a pathological role in a number of diseases. This manuscript aims to better define which aspects of microvascular perfusion are important, what mass transport processes (eg, insulin action, tissue oxygenation) may be impacted, and what therapies might reverse these pathologies. METHODS We derive a theory of microvascular perfusion and solute flux drawing from established relationships in mass transport and anatomy. We then apply this theory to predict relationships between microvascular perfusion parameters and microvascular solute flux. RESULTS For convection-limited exchange processes (eg, pulmonary oxygen uptake), our model predicts that bulk blood flow is of primary importance. For diffusion-limited exchange processes (eg, insulin action), our model predicts that perfused capillary density is of primary importance. For convection/diffusion co-limited exchange processes (eg, tissue oxygenation), our model predicts that various microvascular perfusion parameters interact in a complex, context-specific manner. We further show that our model can predict established mass transport defects in disease (eg, insulin resistance in diabetes). CONCLUSIONS The contributions of microvascular perfusion parameters to tissue-level solute flux can be described using a minimal mathematical model. Our results hold promise for informing therapeutic interventions targeting microvascular perfusion.
Collapse
Affiliation(s)
- Penn M McClatchey
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jane E B Reusch
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA
| |
Collapse
|
10
|
Mandel ER, Dunford EC, Abdifarkosh G, Turnbull PC, Perry CGR, Riddell MC, Haas TL. The superoxide dismutase mimetic tempol does not alleviate glucocorticoid-mediated rarefaction of rat skeletal muscle capillaries. Physiol Rep 2018; 5:e13243. [PMID: 28533261 PMCID: PMC5449555 DOI: 10.14814/phy2.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Sustained elevations in circulating glucocorticoids elicit reductions in skeletal muscle microvascular content, but little is known of the underlying mechanisms. We hypothesized that glucocorticoid‐induced oxidative stress contributes to this phenomenon. In rats that were implanted with corticosterone (CORT) or control pellets, CORT caused a significant decrease in muscle glutathione levels and a corresponding increase in protein carbonylation, an irreversible oxidative modification of proteins. Decreased endothelial nitric oxide synthase and increased endothelin‐1 mRNA levels were detected after 9 days of CORT, and blood flow to glycolytic muscles was diminished. Control and CORT rats were treated concurrently with drinking water containing the superoxide dismutase mimetic tempol (172 mg/L) or the α‐1 adrenergic receptor antagonist prazosin (50 mg/L) for 6 or 16 days. Both tempol and prazosin alleviated skeletal muscle protein carbonylation. Tempol failed to prevent CORT‐mediated capillary rarefaction and was ineffective in restoring skeletal muscle blood flow. In contrast, prazosin blocked capillary rarefaction and restored skeletal muscle blood flow to control levels. The failure of tempol to prevent CORT‐induced skeletal muscle microvascular rarefaction does not support a dominant role of superoxide‐induced oxidative stress in this process. Although a decrease in protein carbonylation was observed with prazosin treatment, our data suggest that the maintenance of skeletal muscle microvascular content is related more closely with counteracting the CORT‐mediated influence on skeletal muscle vascular tone.
Collapse
Affiliation(s)
- Erin R Mandel
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Emily C Dunford
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ghoncheh Abdifarkosh
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Patrick C Turnbull
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Tara L Haas
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Mason McClatchey P, Bauer TA, Regensteiner JG, Schauer IE, Huebschmann AG, Reusch JEB. Dissociation of local and global skeletal muscle oxygen transport metrics in type 2 diabetes. J Diabetes Complications 2017; 31:1311-1317. [PMID: 28571935 PMCID: PMC5891220 DOI: 10.1016/j.jdiacomp.2017.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 01/28/2023]
Abstract
AIMS Exercise capacity is impaired in type 2 diabetes, and this impairment predicts excess morbidity and mortality. This defect appears to involve excess skeletal muscle deoxygenation, but the underlying mechanisms remain unclear. We hypothesized that reduced blood flow, reduced local recruitment of blood volume/hematocrit, or both contribute to excess skeletal muscle deoxygenation in type 2 diabetes. METHODS In patients with (n=23) and without (n=18) type 2 diabetes, we recorded maximal reactive hyperemic leg blood flow, peak oxygen utilization during cycling ergometer exercise (VO2peak), and near-infrared spectroscopy-derived measures of exercise-induced changes in skeletal muscle oxygenation and blood volume/hematocrit. RESULTS We observed a significant increase (p<0.05) in skeletal muscle deoxygenation in type 2 diabetes despite similar blood flow and recruitment of local blood volume/hematocrit. Within the control group skeletal muscle deoxygenation, local recruitment of microvascular blood volume/hematocrit, blood flow, and VO2peak are all mutually correlated. None of these correlations were preserved in type 2 diabetes. CONCLUSIONS These results suggest that in type 2 diabetes 1) skeletal muscle oxygenation is impaired, 2) this impairment may occur independently of bulk blood flow or local recruitment of blood volume/hematocrit, and 3) local and global metrics of oxygen transport are dissociated.
Collapse
Affiliation(s)
- P Mason McClatchey
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, United States
| | - Timothy A Bauer
- Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Judith G Regensteiner
- Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Irene E Schauer
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, United States
| | - Amy G Huebschmann
- Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jane E B Reusch
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, United States; Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
12
|
Lemaster K, Jackson D, Goldman D, Frisbee JC. Insidious incrementalism: The silent failure of the microcirculation with increasing peripheral vascular disease risk. Microcirculation 2017; 24. [DOI: 10.1111/micc.12332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Kent Lemaster
- Department of Physiology and Pharmacology; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Dwayne Jackson
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Daniel Goldman
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| |
Collapse
|
13
|
Impaired Tissue Oxygenation in Metabolic Syndrome Requires Increased Microvascular Perfusion Heterogeneity. J Cardiovasc Transl Res 2017; 10:69-81. [PMID: 28168652 DOI: 10.1007/s12265-017-9732-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023]
Abstract
Metabolic syndrome (MS) in obese Zucker rats (OZR) is associated with impaired skeletal muscle performance and blunted hyperemia. Studies suggest that reduced O2 diffusion capacity is required to explain compromised muscle performance and that heterogeneous microvascular perfusion distribution is critical. We modeled tissue oxygenation during muscle contraction in control and OZR skeletal muscle using physiologically realistic relationships. Using a network model of Krogh cylinders with increasing perfusion asymmetry and increased plasma skimming, we predict increased perfusion heterogeneity and decreased muscle oxygenation in OZR, with partial recovery following therapy. Notably, increasing O2 delivery had less impact on VO2 than equivalent decreases in O2 delivery, providing a mechanism for previous empirical work associating perfusion heterogeneity and impaired O2 extraction. We demonstrate that increased skeletal muscle perfusion asymmetry is a defining characteristic of MS and must be considered to effectively model and understand blood-tissue O2 exchange in this model of human disease.
Collapse
|
14
|
Severe familial hypercholesterolemia impairs the regulation of coronary blood flow and oxygen supply during exercise. Basic Res Cardiol 2016; 111:61. [PMID: 27624732 DOI: 10.1007/s00395-016-0579-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/02/2016] [Indexed: 01/25/2023]
Abstract
Accelerated development of coronary atherosclerosis is a defining characteristic of familial hypercholesterolemia (FH). However, the recent data highlight a significant cardiovascular risk prior to the development of critical coronary stenosis. We, therefore, examined the hypothesis that FH produces coronary microvascular dysfunction and impairs coronary vascular control at rest and during exercise in a swine model of FH. Coronary vascular responses to drug infusions and exercise were examined in chronically instrumented control and FH swine. FH swine exhibited ~tenfold elevation of plasma cholesterol and diffuse coronary atherosclerosis (20-60 % plaque burden). Similar to our recent findings in the systemic vasculature in FH swine, coronary smooth muscle nitric oxide sensitivity was increased in vivo and in vitro with maintained endothelium-dependent vasodilation in vivo in FH. At rest and during exercise, FH swine exhibited increased myocardial O2 extraction resulting in reduced coronary venous SO2 and PO2 versus control. During exercise in FH swine, the transmural distribution of coronary blood flow was unchanged; however, a shift toward anaerobic cardiac metabolism was revealed by increased coronary arteriovenous H(+) concentration gradient. This shift was associated with a worsening of cardiac efficiency (relationship between cardiac work and O2 consumption) in FH during exercise owing, in part, to a generalized reduction in stroke volume which was associated with increased left atrial pressure in FH. Our data highlight a critical role for coronary microvascular dysfunction as a contributor to impaired myocardial O2 balance, cardiac ischemia, and impaired cardiac function prior to the development of critical coronary stenosis in FH.
Collapse
|
15
|
Revascularization and muscle adaptation to limb demand ischemia in diet-induced obese mice. J Surg Res 2016; 205:49-58. [PMID: 27620999 DOI: 10.1016/j.jss.2016.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Obesity and type 2 diabetes are major risk factors for peripheral arterial disease in humans, which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). MATERIALS AND METHODS DIO mice (n = 7) underwent unilateral femoral artery ligation and recovered for 2 wks followed by 4 wks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia (SI) group (n = 7) had femoral artery ligation without exercise. The contralateral limb muscles of SI served as control. Muscles were examined for capillary density, myofiber cross-sectional area, cytokine levels, and phosphorylation of STAT3 and ERK1/2. RESULTS Exercise significantly enhanced capillary density (P < 0.01) and markedly lowered cross-sectional area (P < 0.001) in demand ischemia compared with SI. These findings coincided with a significant increase in granulocyte colony-stimulating factor (P < 0.001) and interleukin-7 (P < 0.01) levels. In addition, phosphorylation levels of STAT3 and ERK1/2 (P < 0.01) were increased, whereas UCP1 and monocyte chemoattractant protein-1 protein levels were lower (P < 0.05) without altering vascular endothelial growth factor and tumor necrosis factor alpha protein levels. Demand ischemia increased the PGC1α messenger RNA (P < 0.001) without augmenting PGC1α protein levels. CONCLUSIONS Exercise-induced limb demand ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in tumor necrosis factor alpha, lower vascular endothelial growth factor, and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO.
Collapse
|
16
|
McClatchey PM, Schafer M, Hunter KS, Reusch JEB. The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature. Am J Physiol Heart Circ Physiol 2016; 311:H168-76. [PMID: 27199117 DOI: 10.1152/ajpheart.00132.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/03/2016] [Indexed: 02/02/2023]
Abstract
Many common diseases involve impaired tissue perfusion, and heterogeneous distribution of blood flow in the microvasculature contributes to this pathology. The physiological mechanisms regulating homogeneity/heterogeneity of microvascular perfusion are presently unknown. Using established empirical formulations for blood viscosity modeling in vivo (blood vessels) and in vitro (glass tubes), we showed that the in vivo formulation predicts more homogenous perfusion of microvascular networks at the arteriolar and capillary levels. Next, we showed that the more homogeneous blood flow under simulated in vivo conditions can be explained by changes in red blood cell interactions with the vessel wall. Finally, we demonstrated that the presence of a space-filling, semipermeable layer (such as the endothelial glycocalyx) at the vessel wall can account for the changes of red blood cell interactions with the vessel wall that promote homogenous microvascular perfusion. Collectively, our results indicate that the mechanical properties of the endothelial glycocalyx promote homogeneous microvascular perfusion. Preservation or restoration of normal glycocalyx properties may be a viable strategy for improving tissue perfusion in a variety of diseases.
Collapse
Affiliation(s)
- P Mason McClatchey
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, Colorado; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michal Schafer
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Cardiology, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado; and
| | - Kendall S Hunter
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Cardiology, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado; and
| | - Jane E B Reusch
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, Colorado; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
17
|
Thorn CE, Shore AC. The role of perfusion in the oxygen extraction capability of skin and skeletal muscle. Am J Physiol Heart Circ Physiol 2016; 310:H1277-84. [PMID: 27016577 DOI: 10.1152/ajpheart.00047.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/22/2016] [Indexed: 12/19/2022]
Abstract
Oxygen extraction (OE) by all cells is dependent on an adequate supply of oxygen in proximal blood vessels and the cell's need and ability to uptake that oxygen. Here the role of blood flow in regulating OE in skin and skeletal muscle was investigated in lean and obese men. OE was derived by two optical reflectance spectroscopy techniques: 1) from the rate of fall in mean blood saturation during a 4 min below knee arterial occlusion, and thus no blood flow, in calf skin and skeletal muscle and 2) in perfused, unperturbed skin, using the spontaneous falls in mean blood saturation induced by vasomotion in calf and forearm skin of 24 subjects, 12 lean and 12 obese. OE in perfused skin was significantly higher in lean compared with obese subjects in forearm (Mann-Whitney, P < 0.004) and calf (P < 0.001) and did not correlate with OE in unperfused skin (ρ = -0.01, P = 0.48). With arterial occlusion and thus no blood flow, skin OE in lean and obese subjects no longer differed (P = 0.23, not significant). In contrast in skeletal muscle with arterial occlusion and no blood flow, the difference in OE between lean and obese subjects occurred, with obese subjects exhibiting significantly higher OE (P < 0.012). The classic model of metabolic blood flow regulation to support oxygen extraction is evident in perfused skin; OE is perturbed without blood flow and reduced in obesity. In resting skeletal muscle other mechanism(s), independent of blood flow, are implicated in oxygen extraction.
Collapse
Affiliation(s)
- Clare E Thorn
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Angela C Shore
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Exeter, United Kingdom
| |
Collapse
|
18
|
Abstract
Consensus has yet to be achieved on whether obesity is inexorably tied to poor fitness. We tested the hypothesis that appropriate reference of cardiopulmonary exercise testing (CPET) variables to lean body mass (LBM) would eliminate differences in fitness between high-BMI (≥ 95th percentile, n = 72, 50% female) and normal-BMI (< 85th percentile, n = 142, 49% female), otherwise-healthy children and adolescents typically seen when referencing body weight. We measured body composition with dual x-ray absorptiometry (DXA) and CPET variables from cycle ergometry using both peak values and submaximal exercise slopes (peak VO2, ΔVO2/ΔHR, ΔWR/ΔHR, ΔVO2/ΔWR, and ΔVE/ΔVCO2). In contrast to our hypothesis, referencing to LBM tended to lessen, but did not eliminate, the differences (peak VO2 [p < .004] and ΔVO2/ΔHR [p < .02]) in males and females; ΔWR/ΔHR differed between the two groups in females (p = .041) but not males (p = .1). The mean percent predicted values for all CPET variables were below 100% in the high-BMI group. The pattern of CPET abnormalities suggested a pervasive impairment of O2 delivery in the high-BMI group (ΔVO2/ΔWR was in fact highest in normal-BMI males). Tailoring lifestyle interventions to the specific fitness capabilities of each child (personalized exercise medicine) may be one of the ways to stem what has been an intractable epidemic.
Collapse
|
19
|
Frisbee JC, Butcher JT, Frisbee SJ, Olfert IM, Chantler PD, Tabone LE, d'Audiffret AC, Shrader CD, Goodwill AG, Stapleton PA, Brooks SD, Brock RW, Lombard JH. Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation. Am J Physiol Heart Circ Physiol 2015; 310:H488-504. [PMID: 26702145 DOI: 10.1152/ajpheart.00790.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022]
Abstract
To determine the impact of progressive elevations in peripheral vascular disease (PVD) risk on microvascular function, we utilized eight rat models spanning "healthy" to "high PVD risk" and used a multiscale approach to interrogate microvascular function and outcomes: healthy: Sprague-Dawley rats (SDR) and lean Zucker rats (LZR); mild risk: SDR on high-salt diet (HSD) and SDR on high-fructose diet (HFD); moderate risk: reduced renal mass-hypertensive rats (RRM) and spontaneously hypertensive rats (SHR); high risk: obese Zucker rats (OZR) and Dahl salt-sensitive rats (DSS). Vascular reactivity and biochemical analyses demonstrated that even mild elevations in PVD risk severely attenuated nitric oxide (NO) bioavailability and caused progressive shifts in arachidonic acid metabolism, increasing thromboxane A2 levels. With the introduction of hypertension, arteriolar myogenic activation and adrenergic constriction were increased. However, while functional hyperemia and fatigue resistance of in situ skeletal muscle were not impacted with mild or moderate PVD risk, blood oxygen handling suggested an increasingly heterogeneous perfusion within resting and contracting skeletal muscle. Analysis of in situ networks demonstrated an increasingly stable and heterogeneous distribution of perfusion at arteriolar bifurcations with elevated PVD risk, a phenomenon that was manifested first in the distal microcirculation and evolved proximally with increasing risk. The increased perfusion distribution heterogeneity and loss of flexibility throughout the microvascular network, the result of the combined effects on NO bioavailability, arachidonic acid metabolism, myogenic activation, and adrenergic constriction, may represent the most accurate predictor of the skeletal muscle microvasculopathy and poor health outcomes associated with chronic elevations in PVD risk.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Joshua T Butcher
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Stephanie J Frisbee
- Department of Health Policy, Management and Leadership, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Lawrence E Tabone
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Alexandre C d'Audiffret
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Carl D Shrader
- Department of Family Medicine, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Adam G Goodwill
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Phoebe A Stapleton
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Robert W Brock
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
20
|
Butcher JT, Stanley SC, Brooks SD, Chantler PD, Wu F, Frisbee JC. Impact of increased intramuscular perfusion heterogeneity on skeletal muscle microvascular hematocrit in the metabolic syndrome. Microcirculation 2015; 21:677-87. [PMID: 24828956 DOI: 10.1111/micc.12146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine HMV and PS in skeletal muscle of OZR and evaluate the impact of increased microvascular perfusion heterogeneity on mass transport/exchange. METHODS The in situ gastrocnemius muscle from OZR and LZR was examined under control conditions and following pretreatment with TEMPOL (antioxidant)/SQ-29548 (PGH2 /TxA2 receptor antagonist), phentolamine (adrenergic antagonist), or all agents combined. A spike input of a labeled blood tracer cocktail was injected into the perfusing artery. Tracer washout was analyzed using models for HMV and PS. HT was determined in in situ cremaster muscle of OZR and LZR using videomicroscopy. RESULTS HMV was decreased in OZR versus LZR. While TEMPOL/SQ-29548 or phentolamine had minor effects, treatment with all three agents improved HMV in OZR. HT was not different between strains, although variability was increased in OZR, and normalized following treatment with all three agents. PS was reduced in OZR and was not impacted by intervention. CONCLUSIONS Increased microvascular perfusion heterogeneity in OZR reduces HMV in muscle vascular networks and increases its variability, potentially contributing to premature muscle fatigue. While targeted interventions can ameliorate this, the reduced microvascular surface area is not acutely reversible.
Collapse
Affiliation(s)
- Joshua T Butcher
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA; Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | | | | | | | | | | |
Collapse
|
21
|
Bender SB, Laughlin MH. Modulation of endothelial cell phenotype by physical activity: impact on obesity-related endothelial dysfunction. Am J Physiol Heart Circ Physiol 2015; 309:H1-8. [PMID: 25934096 DOI: 10.1152/ajpheart.00177.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 01/26/2023]
Abstract
Increased levels of physical activity are associated with reduced cardiovascular disease (CVD) risk and mortality in obesity and diabetes. Available evidence suggests that local factors, including local hemodynamics, account for a significant portion of this CVD protection, and numerous studies have interrogated the therapeutic benefit of physical activity/exercise training in CVD. Less well established is whether basal differences in endothelial cell phenotype between/among vasculatures related to muscle recruitment patterns during activity may account for reports of nonuniform development of endothelial dysfunction in obesity. This is the focus of this review. We highlight recent work exploring the vulnerability of two distinct vasculatures with established differences in endothelial cell phenotype. Specifically, based largely on dramatic differences in underlying hemodynamics, arteries perfusing soleus muscle (slow-twitch muscle fibers) and those perfusing gastrocnemius muscle (fast-twitch muscle fibers) in the rat exhibit an exercise training-like versus an untrained endothelial cell phenotype, respectively. In the context of obesity, therefore, arteries to soleus muscle exhibit protection from endothelial dysfunction compared with vulnerable arteries to gastrocnemius muscle. This disparate vulnerability is consistent with numerous animal and human studies, demonstrating increased skeletal muscle blood flow heterogeneity in obesity coincident with reduced muscle function and exercise intolerance. Mechanistically, we highlight emerging areas of inquiry exploring novel aspects of hemodynamic-sensitive signaling in endothelial cells and the time course of physical activity-associated endothelial adaptations. Lastly, further exploration needs to consider the impact of endothelial heterogeneity on the development of endothelial dysfunction because endothelial dysfunction independently predicts CVD events.
Collapse
Affiliation(s)
- Shawn B Bender
- Research, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
22
|
Cocks M, Wagenmakers AJM. The effect of different training modes on skeletal muscle microvascular density and endothelial enzymes controlling NO availability. J Physiol 2015; 594:2245-57. [PMID: 25809076 DOI: 10.1113/jp270329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/16/2015] [Indexed: 01/12/2023] Open
Abstract
It is becoming increasingly apparent that a high vasodilator response of the skeletal muscle microvasculature to insulin and exercise is of critical importance for adequate muscle perfusion and long-term microvascular and muscle metabolic health. Previous research has shown that a sedentary lifestyle, obesity and ageing lead to impairments in the vasodilator response, while a physically active lifestyle keeps both microvascular density and vasodilator response high. To investigate the molecular mechanisms behind these impairments and the benefits of exercise training interventions, our laboratory has recently developed quantitative immunofluorescence microscopy methods to measure protein content of eNOS and NAD(P)Hoxidase specifically in the endothelial layer of capillaries and arterioles of human skeletal muscle. As eNOS produces nitric oxide (NO) and NAD(P)Hoxidase produces superoxide anions (O2 (-) , quenching NO) we propose that the eNOS/NAD(P)Hoxidase protein ratio is a marker of vasodilator capacity. The novel methods show that endurance training (ET) and high intensity interval training (HIT), generally regarded as a time-efficient alternative to ET, increase eNOS protein content and the eNOS/NADP(H)oxidase protein ratio in previously sedentary lean and obese young men. Resistance exercise training had smaller but qualitatively similar effects. Western blot data of other laboratories suggest that endurance exercise training leads to similar changes in sedentary elderly men. Future research will be required to investigate the relative importance of other sources and tissues in the balance between NO and O2 (-) production seen by the vascular smooth muscle layer of terminal arterioles.
Collapse
Affiliation(s)
- Matthew Cocks
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
23
|
Frisbee JC, Goodwill AG, Frisbee SJ, Butcher JT, Wu F, Chantler PD. Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome. J Physiol 2014; 594:2233-43. [PMID: 25384789 DOI: 10.1113/jphysiol.2014.285247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
A major challenge facing public health is the increased incidence and prevalence of the metabolic syndrome, a clinical condition characterized by excess adiposity, impaired glycaemic control, dyslipidaemia and moderate hypertension. The greatest concern for this syndrome is the profound increase in risk for development of peripheral vascular disease (PVD) in afflicted persons. However, ongoing studies suggest that reductions in bulk blood flow to skeletal muscle may not be the primary contributor to the premature muscle fatigue that is a hallmark of PVD. Compelling evidence has been provided suggesting that an increasingly spatially heterogeneous and temporally stable distribution of blood flow at successive arteriolar bifurcations in metabolic syndrome creates an environment where a large number of the pre-capillary arterioles have low perfusion, low haematocrit, and are increasingly confined to this state, with limited ability to adapt perfusion in response to a challenged environment. Single pharmacological interventions are unable to significantly restore function owing to a divergence in their spatial effectiveness, although combined therapeutic approaches to correct adrenergic dysfunction, elevated oxidant stress and increased thromboxane A2 improve perfusion-based outcomes. Integrated, multi-target therapeutic interventions designed to restore healthy network function and flexibility may provide for superior outcomes in subjects with metabolic syndrome-associated PVD.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Adam G Goodwill
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Stephanie J Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Department of Health Policy, Management and Leadership, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Joshua T Butcher
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Fan Wu
- Novartis Institutes for BioMedical Research, Drug Metabolism and Pharmacokinetics, East Hanover, NJ, USA
| | - Paul D Chantler
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
24
|
Butcher JT, Goodwill AG, Stanley SC, Frisbee JC. Differential impact of dilator stimuli on increased myogenic activation of cerebral and skeletal muscle resistance arterioles in obese zucker rats. Microcirculation 2014; 20:579-89. [PMID: 23510266 DOI: 10.1111/micc.12056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/15/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To use the OZR model of the metabolic syndrome to determine the impact of dilator stimuli on MA of GA and MCA. We tested the hypothesis that increased oxidant stress and TxA2 exacerbate MA, and prevent its blunting with dilator stimuli, in OZR. METHODS GA/MCA from OZR and LZR was pressurized ex vivo. MA was determined under control conditions and following challenge with acetylcholine, hypoxia, and adenosine. Responses were also evaluated after pre-treatment with TEMPOL (antioxidant) and SQ-29548 (PGH2 /TxA2 receptor antagonist). RESULTS MA was increased (and dilator responses decreased) in GA/MCA from OZR, dependent on the endothelium and ROS. In GA, the impact of ROS on MA and dilator effects was largely via TxA2 , while in MCA, this appeared was more dependent on NO bioavailability. Intrinsic responses of GA/MCA to carbacyclin, U46619, and NO donors were similar between strains. CONCLUSIONS A developing ROS-based endothelial dysfunction in MCA and GA of OZR contributes to an enhanced MA of these vessels. Although treatment of GA/MCA with TEMPOL attenuates MA in OZR, the mechanistic contributors to altered MA, distal to ROS, differ between the two resistance vessels.
Collapse
Affiliation(s)
- Joshua T Butcher
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia, USA; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | |
Collapse
|
25
|
Limberg JK, Morgan BJ, Sebranek JJ, Proctor LT, Eldridge MW, Schrage WG. Neural control of blood flow during exercise in human metabolic syndrome. Exp Physiol 2014; 99:1191-202. [PMID: 24659613 DOI: 10.1113/expphysiol.2014.078048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
α-Adrenergic-mediated vasoconstriction is greater during simulated exercise in animal models of metabolic syndrome (MetSyn) when compared with control animals. In an attempt to translate such findings to humans, we hypothesized that adults with MetSyn (n = 14, 35 ± 3 years old) would exhibit greater α-adrenergic responsiveness during exercise when compared with age-matched healthy control subjects (n = 16, 31 ± 3 years old). We measured muscle sympathetic nerve activity (MSNA; microneurography) and forearm blood flow (Doppler ultrasound) during dynamic forearm exercise (15% of maximal voluntary contraction). α-Adrenergic agonists (phenylephrine and clonidine) and an antagonist (phentolamine) were infused intra-arterially to assess α-adrenergic receptor responsiveness and restraint, respectively. Resting MSNA was ∼35% higher in adults with MetSyn (P < 0.05), but did not change in either group with dynamic exercise. Clonidine-mediated vasoconstriction was greater in adults with MetSyn (P < 0.01). Group differences in vascular responses to phenylephrine and phentolamine were not detected (P > 0.05). Interestingly, exercise-mediated vasodilatation was greater in MetSyn (P < 0.05). Adults with MetSyn exhibit greater resting MSNA and clonidine-mediated vasoconstriction, yet preserved functional sympatholysis and higher exercise blood flow during low-intensity hand-grip exercise when compared with age-matched healthy control subjects. These results suggest that adults with MetSyn exhibit compensatory vascular control mechanisms capable of preserving blood flow responses to exercise in the face of augmented sympathetic adrenergic activity.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- School of Education, Department of Kinesiology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Barbara J Morgan
- School of Medicine and Public Health, Department of Orthopedics and Rehabilitation, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Joshua J Sebranek
- School of Medicine and Public Health, Department of Anesthesiology, University of Wisconsin - Madison, Madison, WI 53792, USA
| | - Lester T Proctor
- School of Medicine and Public Health, Department of Anesthesiology, University of Wisconsin - Madison, Madison, WI 53792, USA
| | - Marlowe W Eldridge
- School of Medicine and Public Health, Department of Pediatrics, University of Wisconsin - Madison, Madison, WI 53792, USA
| | - William G Schrage
- School of Education, Department of Kinesiology, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
26
|
Cocks M, Shepherd SO, Shaw CS, Achten J, Costa ML, Wagenmakers AJM. Immunofluorescence microscopy to assess enzymes controlling nitric oxide availability and microvascular blood flow in muscle. Microcirculation 2013; 19:642-51. [PMID: 22642427 DOI: 10.1111/j.1549-8719.2012.00199.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The net production of NO by the muscle microvascular endothelium is a key regulator of muscle microvascular blood flow. Here, we describe the development of a method to quantify the protein content and phosphorylation of endothelial NO synthase (eNOS content and eNOS ser(1177) phosphorylation) and NAD(P)H oxidase expression. METHODS Human muscle cryosections were stained using antibodies targeting eNOS, p-eNOS ser(1177) and NOX2 in combination with markers of the endothelium and the sarcolemma. Quantitation was achieved by analyzing fluorescence intensity within the area stained positive for the microvascular endothelium. Analysis was performed in duplicate and repeated five times to investigate CV. In addition, eight healthy males (age 21 ± 1 year, BMI 24.4 ± 1.0 kg/m(2)) completed one hour of cycling exercise at ~65%VO(2max) . Muscle biopsies were taken from the m. vastus lateralis before and immediately after exercise and analyzed using the new methods. RESULTS The CV of all methods was between 6.5 and 9.5%. Acute exercise increased eNOS serine(1177) phosphorylation (fold change 1.29 ± 0.05, p < 0.05). CONCLUSIONS These novel methodologies will allow direct investigations of the molecular mechanisms underpinning the microvascular responses to insulin and exercise, the impairments that occur in sedentary, obese and elderly individuals and the effect of lifestyle interventions.
Collapse
Affiliation(s)
- Matthew Cocks
- Exercise Metabolism Research Group, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
27
|
Butcher JT, Goodwill AG, Stanley SC, Frisbee JC. Blunted temporal activity of microvascular perfusion heterogeneity in metabolic syndrome: a new attractor for peripheral vascular disease? Am J Physiol Heart Circ Physiol 2013; 304:H547-58. [PMID: 23262133 PMCID: PMC3566484 DOI: 10.1152/ajpheart.00805.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/12/2012] [Indexed: 11/22/2022]
Abstract
A key clinical outcome for peripheral vascular disease (PVD) in patients is a progressive decay in skeletal muscle performance and its ability to resist fatigue with elevated metabolic demand. We have demonstrated that PVD in obese Zucker rats (OZR) is partially due to increased perfusion distribution heterogeneity at successive microvascular bifurcations within skeletal muscle. As this increased heterogeneity (γ) is longitudinally present in the network, its cumulative impact is a more heterogeneous distribution of perfusion between terminal arterioles than normal, causing greater regional tissue ischemia. To minimize this negative outcome, a likely compensatory mechanism against an increased γ should be an increased temporal switching at arteriolar bifurcations to minimize downstream perfusion deficits. Using in situ cremaster muscle, we determined that temporal activity (the cumulative sum of absolute differences between successive values of γ, taken every 20 s) was lower in OZR than in control animals, and this difference was present in both proximal (1A-2A) and distal (3A-4A) arteriolar bifurcations. Although adrenoreceptor blockade (phentolamine) improved temporal activity in 1A-2A arteriolar bifurcations in OZR, this was without impact in the distal microcirculation, where only interventions against oxidant stress (Tempol) and thromboxane A(2) activity (SQ-29548) were effective. Analysis of the attractor for γ indicated that it was not only elevated in OZR but also exhibited severe reductions in range, suggesting that the ability of the microcirculation to respond to any challenge is highly restricted and may represent the major contributor to the manifestation of poor muscle performance at this age in OZR.
Collapse
Affiliation(s)
- Joshua T Butcher
- Department of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
28
|
Limberg JK, Morgan BJ, Sebranek JJ, Proctor LT, Walker BJ, Eldridge MW, Schrage WG. Altered neurovascular control of the resting circulation in human metabolic syndrome. J Physiol 2012; 590:6109-19. [PMID: 23027821 DOI: 10.1113/jphysiol.2012.239780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Young healthy adults exhibit an inverse linear relationship between muscle sympathetic nerve activity (MSNA) and α-adrenergic responsiveness. This balance may be reversed in metabolic syndrome (MetSyn) as animal models exhibit increased sympathetic activity and α-mediated vasoconstriction. We hypothesized humans with MetSyn would demonstrate increased α-adrenergic vasoconstriction and the inverse relationship between MSNA and adrenergic responsiveness would be lost. We measured MSNA (microneurography of the peroneal nerve) and forearm blood flow (FBF, Doppler ultrasound) in 16 healthy control subjects (31 ± 3 years) and 14 adults with MetSyn (35 ± 3 years; P > 0.05) during local administration of α-adrenergic agonists (phenylephrine (PE), α(1); clonidine (CL), α(2)). MSNA was greater in MetSyn subjects than in healthy controls (P < 0.05). A group difference in vasoconstriction to PE was not detected (P = 0.08). The level of α(1)-mediated vasoconstriction was inversely related to MSNA in control subjects (r = 0.5, P = 0.04); this balance between MSNA and α(1) responsiveness was lost in adults with MetSyn. MetSyn subjects exhibited greater vasoconstriction to CL infusion as compared with healthy controls (P < 0.01). A relationship between MSNA and α(2)-mediated vasoconstriction was not detected in either group. In summary, altered neurovascular control in human MetSyn is receptor specific. The observed uncoupling between MSNA and α(1)-adrenergic responsiveness and increased α(2) vasoconstriction may lead to reduced FBF, altered flow distribution, and/or severe hypertension with the progression toward diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- School of Education, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53076, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Wu F, Beard DA, Frisbee JC. Computational analyses of intravascular tracer washout reveal altered capillary-level flow distributions in obese Zucker rats. J Physiol 2011; 589:4527-43. [PMID: 21788350 DOI: 10.1113/jphysiol.2011.209775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intravascular tracer washout data obtained from gastrocnemius muscle of lean Zucker rats (LZRs) and obese Zucker rats (OZRs) were analysed to investigate flow distributions in the OZR, a model of non-atherosclerotic peripheral vascular disease. A computer model used to simulate the network washout curves was developed based on experimentally observed relative dispersions in large vessels and asymmetrical flow distributions at bifurcations in dichotomous microvascular networks. The model results of simulations were compared to experimental washout data of (125)I-labelled albumin, an intravascular tracer, to uncover flow distributions on the arterial-network and capillary levels. The lean and obese Zucker rats demonstrated distinct capillary-level flow distributions, with higher dispersion and significantly more low-flow capillaries in the OZRs than in the LZRs. Targeted pharmacological treatments against identified sites of vascular dysfunction in OZRs (adrenoreceptor blockade with phentolamine, antioxidant treatment with Tempol and thromboxane receptor antagonism with SQ-29548) were shown to improve the capillary-level flow distributions in treated OZRs toward distributions determined in control LZRs. Combination therapy with multiple pharmacological interventions resulted in a greater degree of recovery. This study demonstrates that the enhanced perfusion heterogeneity at arteriole bifurcations is a potential mechanism underlying perfusion-demand mismatching in OZRs, and suggests that amelioration of this dysfunction must involve a multi-faceted interventional approach.
Collapse
Affiliation(s)
- Fan Wu
- Biotechnology and Bioengineering Centre and Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
30
|
Frisbee JC, Wu F, Goodwill AG, Butcher JT, Beard DA. Spatial heterogeneity in skeletal muscle microvascular blood flow distribution is increased in the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol 2011; 301:R975-86. [PMID: 21775645 DOI: 10.1152/ajpregu.00275.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies have demonstrated that the metabolic syndrome is associated with impaired skeletal muscle arteriolar function, although integrating observations into a conceptual framework for impaired perfusion in peripheral vascular disease (PVD) has been limited. This study builds on previous work to evaluate in situ arteriolar hemodynamics in cremaster muscle of obese Zucker rats (OZR) to integrate existing knowledge into a greater understanding of impaired skeletal muscle perfusion. In OZR cremaster muscle, perfusion distribution at microvascular bifurcations (γ) was consistently more heterogeneous than in controls. However, while consistent, the underlying mechanistic contributors were spatially divergent as altered adrenergic constriction was the major contributor to altered γ at proximal microvascular bifurcations, with a steady decay with distance, while endothelial dysfunction was a stronger contributor in distal bifurcations with no discernible role proximally. Using measured values of γ, we found that simulations predict that successive alterations to γ in OZR caused more heterogeneous perfusion distribution in distal arterioles than in controls, an effect that could only be rectified by combined adrenoreceptor blockade and improvements to endothelial dysfunction. Intravascular (125)I-labeled albumin tracer washout from in situ gastrocnemius muscle of OZR provided independent support for these observations, indicating increased perfusion heterogeneity that was corrected only by combined adrenoreceptor blockade and improved endothelial function. These results suggest that a defining element of PVD in the metabolic syndrome may be an altered γ at microvascular bifurcations, that its contributors are heterogeneous and spatially distinct, and that interventions to rectify this negative outcome must take a new conceptual framework into account.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Center for Cardiovascular and Respiratory Sciences, Dept. of Physiology and Pharmacology, West Virginia Univ. Health Sciences Center; 3152 HSN, 1 Medical Center Dr., Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|