1
|
Tian M, Abdelrahman A, Baqi Y, Fuentes E, Azazna D, Spanier C, Densborn S, Hinz S, Schmid R, Müller CE. Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists. J Med Chem 2020; 63:6164-6178. [PMID: 32345019 DOI: 10.1021/acs.jmedchem.0c00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antagonists for the ATP-gated ion channel receptor P2X1 have potential as antithrombotics and for treating hyperactive bladder and inflammation. In this study, salicylanilide derivatives were synthesized based on a screening hit. P2X1 antagonistic potency was assessed in 1321N1 astrocytoma cells stably transfected with the human P2X1 receptor by measuring inhibition of the ATP-induced calcium influx. Structure-activity relationships were analyzed, and selectivity versus other P2X receptor subtypes was assessed. The most potent compounds, N-[3,5-bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide (1, IC50 0.0192 μM) and N-[3,5-bis(trifluoromethyl)phenyl]-4-chloro-2-hydroxybenzamide (14, IC50 0.0231 μM), displayed >500-fold selectivity versus P2X2 and P2X3, and 10-fold selectivity versus P2X4 and P2X7 receptors, and inhibited collagen-induced platelet aggregation. They behaved as negative allosteric modulators, and molecular modeling studies suggested an extracellular binding site. Besides selective P2X1 antagonists, compounds with ancillary P2X4 and/or P2X7 receptor inhibition were discovered. These compounds represent the first potent, non-acidic, allosteric P2X1 receptor antagonists reported to date.
Collapse
Affiliation(s)
- Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, 123 Muscat, Oman
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, 3460000 Talca, Chile
| | - Djamil Azazna
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Claudia Spanier
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sabrina Densborn
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, U.K
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
2
|
Li B, Yu Q, Wang R, Gratzke C, Wang X, Spek A, Herlemann A, Tamalunas A, Strittmatter F, Waidelich R, Stief CG, Hennenberg M. Inhibition of Female and Male Human Detrusor Smooth Muscle Contraction by the Rac Inhibitors EHT1864 and NSC23766. Front Pharmacol 2020; 11:409. [PMID: 32317972 PMCID: PMC7154109 DOI: 10.3389/fphar.2020.00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Lower urinary tract symptoms (LUTS) due to overactive bladder (OAB) are caused by spontaneous detrusor contractions. Medical treatment with muscarinic receptor antagonists or β3-adrenoceptor agonists aims to inhibit detrusor contractions, but overall results are unsatisfactory. Consequently, improved understanding of bladder smooth muscle contraction and identification of novel compounds for its inhibition are needed to develop alternative options. A role of the GTPase Rac1 for smooth muscle contraction has been reported from the prostate, but is unknown in the human detrusor. Here, we examined effects of the Rac inhibitors NSC23766, which may also antagonize muscarinic receptors, and EHT1864 on contraction of human detrusor tissues. Methods Female and male human detrusor tissues were obtained from radical cystectomy. Effects of NSC23766 (100 µM) and EHT1864 (100 µM) on detrusor contractions were studied in an organ bath. Results Electric field stimulation induced frequency-dependent contractions of detrusor tissues, which were inhibited by NSC23766 and EHT1864. Carbachol induced concentration-dependent contractions. Concentration response curves for carbachol were shifted to the right by NSC23766, reflected by increased EC50 values, but unchanged Emax values. EHT1864 reduced carbachol-induced contractions, resulting in reduced Emax values for carbachol. The thromboxane analog U46619 induced concentration-dependent contractions, which remained unchanged by NSC23766, but were reduced by EHT1864. Conclusions NSC23766 and EHT1864 inhibit female and male human detrusor contractions. NSC23766, but not EHT1864 competitively antagonizes muscarinic receptors. In addition to neurogenic and cholinergic contractions, EHT1864 inhibits thromboxane A2-induced detrusor contractions. The latter may be promising, as the origin of spontaneous detrusor contractions in OAB is noncholinergic. In vivo, both compounds may improve OAB-related LUTS.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Qingfeng Yu
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Gratzke
- Department of Urology, University Hospital, LMU Munich, Munich, Germany.,Department of Urology, University of Freiburg, Freiburg, Germany
| | - Xiaolong Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Annabel Spek
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Annika Herlemann
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Silva-Ramos M, Silva I, Faria M, Ferreirinha F, Correia-de-Sá P. Activation of Prejunctional P2x2/3 Heterotrimers by ATP Enhances the Cholinergic Tone in Obstructed Human Urinary Bladders. J Pharmacol Exp Ther 2020; 372:63-72. [PMID: 31636173 DOI: 10.1124/jpet.119.261610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to investigate the role of ATP in cholinergic neurotransmission in the urinary bladder of control men and of patients obstructed as a result of benign prostatic hyperplasia (BPH). Human detrusor samples were collected from 41 patients who submitted to transvesical prostatectomy resulting from BPH and 26 male organ donors. The release of [3H]acetylcholine ([3H]ACh) was evoked by electrical field stimulation (10 Hz, 200 pulses) in urothelium-denuded detrusor strips. Myographic recordings were performed to test detrusor strip sensitivity to ACh and ATP. Nerve-evoked [3H]ACh release was 1.5-fold higher in detrusor strips from BPH patients compared with controls. This difference was abolished after desensitization of ionotropic P2X1-3 receptors with an ATP analog, α,β-methylene ATP (30 μM, applied for 15 minutes). TNP-ATP (10 nM, a preferential P2X2/3 antagonist) and A317491 (100 nM, a selective P2X3 antagonist) were about equipotent in decreasing nerve-evoked [3H]ACh release in control detrusor strips, but the selective P2X1 receptor antagonist NF023 (3 μM) was devoid of effect. The inhibitory effect of TNP-ATP (10 nM) increased from 27% ± 9% to 43% ± 6% in detrusor strips of BPH patients, but the effect of A317491 (100 nM) [3H]ACh release unaltered (20% ± 2% vs. 24% ± 4%). The amplitude of ACh (0.1-100 μM)-induced myographic recordings decreased, whereas sensitivity to ATP (0.01-3 mM) increased in detrusor strips from BPH patients. Besides the well characterized P2X1 receptor-mediated contractile activity of ATP in pathologic human bladders, we show here for the first time that cholinergic hyperactivity in the detrusor of BPH patients is facilitated by activation of ATP-sensitive P2X2/3 heterotrimers. SIGNIFICANCE STATEMENT: Bladder outlet obstruction often leads to detrusor overactivity and reduced bladder compliance in parallel to atropine-resistant increased purinergic tone. Our data show that P2X1 purinoceptors are overexpressed in the detrusor of patients with benign prostatic hyperplasia. Besides the P2X1 receptor-mediated detrusor contractions, ATP favors nerve-evoked acetylcholine release via the activation of prejunctional P2X2/3 excitatory receptors in these patients Thus, our hypothesis is that manipulation of the purinergic tone may be therapeutically useful to counteract cholinergic overstimulation in obstructed patients.
Collapse
Affiliation(s)
- M Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - I Silva
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - M Faria
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| |
Collapse
|
4
|
McCarthy CJ, Ikeda Y, Skennerton D, Chakrabarty B, Kanai AJ, Jabr RI, Fry CH. Characterisation of nerve-mediated ATP release from bladder detrusor muscle and its pathological implications. Br J Pharmacol 2019; 176:4720-4730. [PMID: 31430833 DOI: 10.1111/bph.14840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aims to characterise the molecular mechanisms that determine variability of atropine resistance of nerve-mediated contractions in human and guinea pig detrusor smooth muscle. EXPERIMENTAL APPROACH Atropine resistance of nerve-mediated contractions and the role of P2X1 receptors, were assessed in isolated preparations from guinea pigs and also humans with or without overactive bladder syndrome, from which the mucosa was removed. Nerve-mediated ATP release was measured directly with amperometric ATP-sensitive electrodes. Ecto-ATPase activity of guinea pig and human detrusor samples was measured in vitro by measuring the concentration-dependent rate of ATP breakdown. The transcription of ecto-ATPase subtypes in human samples was measured by qPCR. KEY RESULTS Atropine resistance was greatest in guinea pig detrusor, absent in human tissue from normally functioning bladders, and intermediate in human overactive bladder. Greater atropine resistance correlated with reduction of contractions by the ATP-diphosphohydrolase apyrase, directly implicating ATP in their generation. E-NTPDase-1 was the most abundantly transcribed ecto-ATPase of those tested, and transcription was reduced in tissue from human overactive, compared to normal, bladders. E-NTPDase-1 enzymic activity was inversely related to the magnitude of atropine resistance. Nerve-mediated ATP release was continually measured and varied with stimulation frequency over the range of 1-16 Hz. CONCLUSION AND IMPLICATIONS Atropine resistance in nerve-mediated detrusor contractions is due to ATP release and its magnitude is inversely related to E-NTPDase-1 activity. ATP is released under different stimulation conditions compared with ACh, implying different routes for their release.
Collapse
Affiliation(s)
- Carly J McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Austral University, Buenos Aires, Argentina.,Department of Surgery, University College London, London, UK
| | - Youko Ikeda
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University College London, London, UK
| | | | - Basu Chakrabarty
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rita I Jabr
- School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - Christopher H Fry
- Department of Surgery, University College London, London, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Liang C, Shaw SS, Huang Y, Lin Y, Lee T. Bladder Transplantation of Amniotic Fluid Stem Cell may Ameliorate Bladder Dysfunction After Focal Cerebral Ischemia in Rat. Stem Cells Transl Med 2017; 6:1227-1236. [PMID: 28186672 PMCID: PMC5442832 DOI: 10.1002/sctm.16-0212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/29/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
The objective is to investigate whether human amniotic fluid stem cells (hAFSCs) grafting into the bladder may influence bladder functional and molecular changes in an animal stroke model. Female rats were divided into three groups: sham, middle cerebral artery occlusion (MCAO) alone, and MCAO plus 1 × 106 hAFSCs transplanting into bladder wall. Bladder function was analyzed by cystometry at days 3 and 10 after MCAO. The expressions of bladder nerve growth factor (NGF), M2-muscarinic, M3-muscarinic, and P2X1 receptors were measured by immunohistochemistry and real-time polymerase chain reaction. When compared with sham-operated group, MCAO alone rats had significant increase in residual volume and decrease in voided volume and intercontraction interval; however, these bladder dysfunctions were improved following hAFSCs transplantation. The immunoreactivities of NGF, M3, and P2X1 significantly decreased at days 3 and 10, but M2 increased at day 3 after MCAO. Following hAFSCs transplantation, the immunoreactivities of NGF and P2X1 significantly increased at day 3, and M2 increased at day 10 after MCAO. The mRNAs of NGF, M2, and M3 significantly increased at day 3, but NGF and M2 decreased at day 10 after MCAO. Following hAFSCs transplantation, there was significant decrease in M2 mRNA at day 3 and increase in P2X1 mRNA at days 3 and 10 after MCAO. Bladder dysfunction caused by MCAO can be improved by hAFSCs transplanting into bladder which may be related to the expressions of bladder NGF, and muscarinic and P2X1 receptors. Stem Cells Translational Medicine 2017;6:1227-1236.
Collapse
Affiliation(s)
- Ching‐Chung Liang
- Female Urology Section, Department of Obstetrics and GynecologyChang Gung Memorial Hospital Linkou Medical CenterTaoyuanTaiwanRepublic of China
- College of MedicineChang Gung UniversityTaoyuanTaiwanRepublic of China
| | - S.W. Steven Shaw
- Division of Obstetrics, Department of Obstetrics and GynecologyChang Gung Memorial Hospital Linkou Medical CenterTaoyuanTaiwanRepublic of China
- College of MedicineChang Gung UniversityTaoyuanTaiwanRepublic of China
- Prenatal Cell and Gene Therapy GroupInstitute for Women's Health, University College LondonLondonUnited Kingdom
| | - Yung‐Hsin Huang
- Female Urology Section, Department of Obstetrics and GynecologyChang Gung Memorial Hospital Linkou Medical CenterTaoyuanTaiwanRepublic of China
| | - Yi‐Hao Lin
- Female Urology Section, Department of Obstetrics and GynecologyChang Gung Memorial Hospital Linkou Medical CenterTaoyuanTaiwanRepublic of China
- College of MedicineChang Gung UniversityTaoyuanTaiwanRepublic of China
| | - Tsong‐Hai Lee
- Stroke Center and Department of NeurologyChang Gung Memorial Hospital Linkou Medical CenterTaoyuanTaiwanRepublic of China
- College of MedicineChang Gung UniversityTaoyuanTaiwanRepublic of China
| |
Collapse
|
6
|
Mittal R, Chan B, Grati M, Mittal J, Patel K, Debs LH, Patel AP, Yan D, Chapagain P, Liu XZ. Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X2 in the Auditory System. J Cell Physiol 2015; 231:1656-70. [PMID: 26627116 DOI: 10.1002/jcp.25274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Abstract
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida.,Biomolecular Science Institute, Florida International University, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|