1
|
Li L, Yu D, Wei Y, Sun Y, Zhao J, Zhou Z, Yang J, Zhang Z, Yan X. A SmNiO 3 memristor with artificial synapse function properties and the implementation of Boolean logic circuits. NANOSCALE 2023; 15:7105-7114. [PMID: 36988405 DOI: 10.1039/d2nr06044b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, with the improvement of the requirements for fast and efficient data processing in the era of artificial intelligence, new forms of computing have come into being. Developing memristor devices that can simulate the brain's computing neutral network is particularly important for applications in the field of artificial intelligence. However, there are still some challenges in their biological function simulation and related circuit design. In this work, a memristor based on perovskite rare earth nickelates (RNiO3) is presented with excellent electrical performance, including three orders of magnitude higher current switching ratio and good repeatability, and can achieve bidirectional conductance regulation like weight modulation in bio-synapse. Furthermore, the synaptic like characteristics of the device have been mimicked successfully, such as excitatory postsynaptic current (EPSC), paired pulse facilitation (PPF), classical double pulse spike time-dependent plasticity (classical pair-STDP), triplet spike time-dependent plasticity (triplet-STDP), short-term plasticity (STP), long-term plasticity (LTP), the refractory period phenomenon and learning and forgetting rules. In particular, two synaptic devices and a leaky integrate-and-fire (LIF) neuron device are used to achieve a logic gate circuit to realize "AND", "OR", and "NOT" functions. The device paves the way for the application of high-density circuits in artificial intelligence.
Collapse
Affiliation(s)
- Lei Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Dongqing Yu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Yiheng Wei
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Yong Sun
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Jianhui Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Zhenyu Zhou
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Jie Yang
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | | | - Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
2
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
3
|
Ponterio G, Faustini G, El Atiallah I, Sciamanna G, Meringolo M, Tassone A, Imbriani P, Cerri S, Martella G, Bonsi P, Bellucci A, Pisani A. Alpha-Synuclein is Involved in DYT1 Dystonia Striatal Synaptic Dysfunction. Mov Disord 2022; 37:949-961. [PMID: 35420219 PMCID: PMC9323501 DOI: 10.1002/mds.29024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 12/26/2022] Open
Abstract
Background The neuronal protein alpha‐synuclein (α‐Syn) is crucially involved in Parkinson's disease pathophysiology. Intriguingly, torsinA (TA), the protein causative of DYT1 dystonia, has been found to accumulate in Lewy bodies and to interact with α‐Syn. Both proteins act as molecular chaperones and control synaptic machinery. Despite such evidence, the role of α‐Syn in dystonia has never been investigated. Objective We explored whether α‐Syn and N‐ethylmaleimide sensitive fusion attachment protein receptor proteins (SNAREs), that are known to be modulated by α‐Syn, may be involved in DYT1 dystonia synaptic dysfunction. Methods We used electrophysiological and biochemical techniques to study synaptic alterations in the dorsal striatum of the Tor1a+/Δgag mouse model of DYT1 dystonia. Results In the Tor1a+/Δgag DYT1 mutant mice, we found a significant reduction of α‐Syn levels in whole striata, mainly involving glutamatergic corticostriatal terminals. Strikingly, the striatal levels of the vesicular SNARE VAMP‐2, a direct α‐Syn interactor, and of the transmembrane SNARE synaptosome‐associated protein 23 (SNAP‐23), that promotes glutamate synaptic vesicles release, were markedly decreased in mutant mice. Moreover, we detected an impairment of miniature glutamatergic postsynaptic currents (mEPSCs) recorded from striatal spiny neurons, in parallel with a decreased asynchronous release obtained by measuring quantal EPSCs (qEPSCs), which highlight a robust alteration in release probability. Finally, we also observed a significant reduction of TA striatal expression in α‐Syn null mice. Conclusions Our data demonstrate an unprecedented relationship between TA and α‐Syn, and reveal that α‐Syn and SNAREs alterations characterize the synaptic dysfunction underlying DYT1 dystonia. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Pisani
- IRCCS Fondazione Mondino, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Leithead AB, Tasker JG, Harony‐Nicolas H. The interplay between glutamatergic circuits and oxytocin neurons in the hypothalamus and its relevance to neurodevelopmental disorders. J Neuroendocrinol 2021; 33:e13061. [PMID: 34786775 PMCID: PMC8951898 DOI: 10.1111/jne.13061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 11/27/2022]
Abstract
Oxytocin (OXT) neurons of the hypothalamus are at the center of several physiological functions, including milk ejection, uterus contraction, and maternal and social behavior. In lactating females, OXT neurons show a pattern of burst firing and inter-neuron synchronization during suckling that leads to pulsatile release of surges of OXT into the bloodstream to stimulate milk ejection. This pattern of firing and population synchronization may be facilitated in part by hypothalamic glutamatergic circuits, as has been observed in vitro using brain slices obtained from male rats and neonates. However, it remains unknown how hypothalamic glutamatergic circuits influence OXT cell activity outside the context of lactation. In this review, we summarize the in vivo and in vitro studies that describe the synchronized burst firing pattern of OXT neurons and the implication of hypothalamic glutamate in this pattern of firing. We also make note of the few studies that have traced glutamatergic afferents to the hypothalamic paraventricular and supraoptic nuclei. Finally, we discuss the genetic findings implicating several glutamatergic genes in neurodevelopmental disorders, including autism spectrum disorder, thus underscoring the need for future studies to investigate the impact of these mutations on hypothalamic glutamatergic circuits and the OXT system.
Collapse
Affiliation(s)
- Amanda B. Leithead
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jeffrey G. Tasker
- Neurobiology DivisionDepartment of Cell and Molecular BiologyTulane UniversityNew OrleansLAUSA
| | - Hala Harony‐Nicolas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
5
|
Maturation of amygdala inputs regulate shifts in social and fear behaviors: A substrate for developmental effects of stress. Neurosci Biobehav Rev 2021; 125:11-25. [PMID: 33581221 DOI: 10.1016/j.neubiorev.2021.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Stress can negatively impact brain function and behaviors across the lifespan. However, stressors during adolescence have particularly harmful effects on brain maturation, and on fear and social behaviors that extend beyond adolescence. Throughout development, social behaviors are refined and the ability to suppress fear increases, both of which are dependent on amygdala activity. We review rodent literature focusing on developmental changes in social and fear behaviors, cortico-amygdala circuits underlying these changes, and how this circuitry is altered by stress. We first describe changes in fear and social behaviors from adolescence to adulthood and parallel developmental changes in cortico-amygdala circuitry. We propose a framework in which maturation of cortical inputs to the amygdala promote changes in social drive and fear regulation, and the particularly damaging effects of stress during adolescence may occur through lasting changes in this circuit. This framework may explain why anxiety and social pathologies commonly co-occur, adolescents are especially vulnerable to stressors impacting social and fear behaviors, and predisposed towards psychiatric disorders related to abnormal cortico-amygdala circuits.
Collapse
|
6
|
The Synaptic Vesicle Cycle Revisited: New Insights into the Modes and Mechanisms. J Neurosci 2020; 39:8209-8216. [PMID: 31619489 DOI: 10.1523/jneurosci.1158-19.2019] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 02/01/2023] Open
Abstract
Neurotransmission is sustained by endocytosis and refilling of synaptic vesicles (SVs) locally within the presynapse. Until recently, a consensus formed that after exocytosis, SVs are recovered by either fusion pore closure (kiss-and-run) or clathrin-mediated endocytosis directly from the plasma membrane. However, recent data have revealed that SV formation is more complex than previously envisaged. For example, two additional recycling pathways have been discovered, ultrafast endocytosis and activity-dependent bulk endocytosis, in which SVs are regenerated from the internalized membrane and synaptic endosomes. Furthermore, these diverse modes of endocytosis appear to influence both the molecular composition and subsequent physiological role of individual SVs. In addition, previously unknown complexity in SV refilling and reclustering has been revealed. This review presents a modern view of the SV life cycle and discusses how neuronal subtype, physiological temperature, and individual activity patterns can recruit different endocytic modes to generate new SVs and sculpt subsequent presynaptic performance.
Collapse
|
7
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
8
|
Forte N, Binda F, Contestabile A, Benfenati F, Baldelli P. Synapsin I Synchronizes GABA Release in Distinct Interneuron Subpopulations. Cereb Cortex 2019; 30:1393-1406. [DOI: 10.1093/cercor/bhz174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/28/2023] Open
Abstract
Abstract
Neurotransmitters can be released either synchronously or asynchronously with respect to action potential timing. Synapsins (Syns) are a family of synaptic vesicle (SV) phosphoproteins that assist gamma-aminobutyric acid (GABA) release and allow a physiological excitation/inhibition balance. Consistently, deletion of either or both Syn1 and Syn2 genes is epileptogenic. In this work, we have characterized the effect of SynI knockout (KO) in the regulation of GABA release dynamics. Using patch-clamp recordings in hippocampal slices, we demonstrate that the lack of SynI impairs synchronous GABA release via a reduction of the readily releasable SVs and, in parallel, increases asynchronous GABA release. The effects of SynI deletion on synchronous GABA release were occluded by ω-AgatoxinIVA, indicating the involvement of P/Q-type Ca2+channel-expressing neurons. Using in situ hybridization, we show that SynI is more expressed in parvalbumin (PV) interneurons, characterized by synchronous release, than in cholecystokinin or SOM interneurons, characterized by a more asynchronous release. Optogenetic activation of PV and SOM interneurons revealed a specific reduction of synchronous release in PV/SynIKO interneurons associated with an increased asynchronous release in SOM/SynIKO interneurons. The results demonstrate that SynI is differentially expressed in interneuron subpopulations, where it boosts synchronous and limits asynchronous GABA release.
Collapse
Affiliation(s)
- N Forte
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - F Binda
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - A Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - F Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - P Baldelli
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
9
|
Fawley JA, Andresen MC. Distinct Calcium Sources Define Compartmentalized Synaptic Signaling Domains. Neuroscientist 2019; 25:408-419. [PMID: 31375041 DOI: 10.1177/1073858419863771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nervous system communication relies on neurotransmitter release for synaptic transmission between neurons. Neurotransmitter is contained within vesicles in presynaptic terminals and intraterminal calcium governs the fundamental step of their release into the synaptic cleft. Despite a common dependence on calcium, synaptic transmission and its modulation varies highly across the nervous system. The precise mechanisms that underlie this heterogeneity, however, remain unclear. The present review highlights recent data that reveal vesicles sourced from separate pools define discrete modes of release. A rich diversity of regulatory machinery may further distinguish the different forms of vesicle release, including presynaptic proteins involved in trafficking, alignment, and exocytosis. These multiple vesicle release mechanisms and vesicle pools likely depend on the arrangement of vesicles in relation to specific calcium entry pathways that create compartmentalized spheres of calcium influence (i.e., domains). This diversity permits release specialization. This review details examples of how individual neurons rely on multiple calcium sources and unique regulatory schemes to provide differential release and discrete modulation of neurotransmitter release from specific vesicle pools-as part of network signal integration.
Collapse
Affiliation(s)
- Jessica A Fawley
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Andresen
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Chanaday NL, Kavalali ET. Presynaptic origins of distinct modes of neurotransmitter release. Curr Opin Neurobiol 2018; 51:119-126. [PMID: 29597140 PMCID: PMC6066415 DOI: 10.1016/j.conb.2018.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022]
Abstract
Presynaptic nerve terminals release neurotransmitter synchronously, asynchronously or spontaneously. During synchronous neurotransmission release is precisely coupled to action potentials, in contrast, asynchronous release events show only loose temporal coupling to presynaptic activity whereas spontaneous neurotransmission occurs independent of presynaptic activity. The mechanisms that give rise to this diversity in neurotransmitter release modes are poorly understood. Recent studies have described several presynaptic molecular pathways controlling synaptic vesicle pool segregation and recycling, which in turn may dictate distinct modes of neurotransmitter release. In this article, we review this recent work regarding neurotransmitter release modes and their relationship to synaptic vesicle pool dynamics as well as the molecular machinery that establishes synaptic vesicle pool identity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
11
|
Distinct Calcium Sources Support Multiple Modes of Synaptic Release from Cranial Sensory Afferents. J Neurosci 2017; 36:8957-66. [PMID: 27559176 DOI: 10.1523/jneurosci.1028-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/09/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Most craniosensory afferents have unmyelinated axons expressing TRP Vanilloid 1 (TRPV1) receptors in synaptic terminals at the solitary tract nucleus (NTS). Neurotransmission from these synapses is characterized by substantial asynchronous EPSCs following action potential-synched EPSCs and high spontaneous rates that are thermally sensitive. The present studies blocked voltage-activated calcium channels (CaV) using the nonselective CaV blocker Cd(2+) or the specific N-type blocker ω-conotoxin GVIA to examine the calcium dependence of the synchronous, asynchronous, spontaneous, and thermally gated modes of release. In rat brainstem slices containing caudal NTS, shocks to the solitary tract (ST) triggered synchronous ST-EPSCs and trailing asynchronous EPSCs. Cd(2+) or GVIA efficiently reduced both synchronous and asynchronous EPSCs without altering spontaneous or thermal-evoked transmission. Activation of TRPV1 with either the selective agonist resiniferatoxin (150 pm) or temperature augmented basal sEPSC rates but failed to alter the synchronous or asynchronous modes of release. These data indicate that calcium sourced through TRPV1 has no access to the synchronous or asynchronous release mechanism(s) and conversely that CaV-sourced calcium does not interact with the thermally evoked mode of release. Buffering intracellular calcium with EGTA-AM or BAPTA-AM reduced asynchronous EPSC rates earlier and to a greater extent than synchronous ST-EPSC amplitudes without altering sEPSCs or thermal sensitivity. Buffering therefore distinguishes asynchronous vesicles as possessing a highly sensitive calcium sensor located perhaps more distant from CaV than synchronous vesicles or thermally evoked vesicles from TRPV1. Together, our findings suggest separate mechanisms of release for spontaneous, asynchronous and synchronous vesicles that likely reside in unique, spatially separated vesicle domains. SIGNIFICANCE STATEMENT Most craniosensory fibers release glutamate using calcium entry from two sources: CaVs and TRPV1. We demonstrate that calcium segregation distinguishes three vesicle release mechanisms. Most surprisingly, asynchronous release is associated with CaV and not TRPV1 calcium entry. This reveals that asynchronous release is an additional and separate phenotypic marker of unmyelinated afferents rather than operated by TRPV1. The functional independence of the two calcium sources expands the regulatory repertoire of transmission and imbues these inputs with additional modulation targets for synaptic release not present at conventional CaV synapses. Peptides and lipid mediators may target one or both of these calcium sources at afferent terminals within the solitary tract nucleus to independently modify release from distinct, functionally segregated vesicle pools.
Collapse
|
12
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 PMCID: PMC5394918 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|