1
|
Lv C, Huang Y, Yan R, Gao Y. Vascular endothelial growth factor induces the migration of human airway smooth muscle cells by activating the RhoA/ROCK pathway. BMC Pulm Med 2023; 23:505. [PMID: 38093231 PMCID: PMC10720058 DOI: 10.1186/s12890-023-02803-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Airway remodeling due to increased airway smooth muscle cell (ASMC) mass, likely due to enhanced proliferation, hypertrophy, and migration, has been proven to be highly correlated with decreased lung function in asthma patients. Vascular endothelial growth factor (VEGF) mediates vascular and extravascular remodeling and inflammation and has been proven to be involved in the progression of asthma. Previous studies have focused on the effects of VEGF on ASMC proliferation, but few researchers have focused on the effects of VEGF on human ASMC migration. The purpose of this study was to explore the effect of VEGF on the migration of ASMCs and its related signaling pathway mechanism to provide evidence for the treatment of airway remodeling. METHODS We examined the effects of VEGF induction on ASMC migration and explored the mechanisms involved in ASMC migration. RESULTS We found by wound healing and Transwell assays that VEGF promoted ASMC migration. Through the Cell Counting Kit-8 (CCK-8) experiment, we found that VEGF had no significant effect on the proliferation of ASMCs, which excluded the involvement of cell proliferation in the process of wound healing. Moreover, a cellular immunofluorescence assay showed that VEGF promoted F-actin reorganization, and Western blotting showed that VEGF improved RhoA activation and myosin phosphatase targeting subunit-1 (MYPT1) and myosin light chain (MLC) phosphorylation in ASMCs. Treatment with the ROCK inhibitor Y27632 significantly attenuated the effects of VEGF on MYPT1/MLC activation and cell migration. CONCLUSION In conclusion, the results suggest that the promigratory function of VEGF activates the RhoA/ROCK pathway, induces F-actin reorganization, improves the migration of ASMCs, and provides a better rationale for targeting the RhoA/ROCK pathway for therapeutic approaches in airway remodeling.
Collapse
Affiliation(s)
- Chengtian Lv
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwen Huang
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruirong Yan
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanmei Gao
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Ruiz-Lozano RE, Azar NS, Mousa HM, Quiroga-Garza ME, Komai S, Wheelock-Gutierrez L, Cartes C, Perez VL. Ocular surface disease: a known yet overlooked side effect of topical glaucoma therapy. FRONTIERS IN TOXICOLOGY 2023; 5:1067942. [PMID: 37547228 PMCID: PMC10403269 DOI: 10.3389/ftox.2023.1067942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Ocular surface disease (OSD), a disorder affecting the lacrimal and meibomian glands and the corneal and conjunctival epithelium, is a well-known complication of topical glaucoma therapy. OSD can present as a new or pre-existing condition that virtually any anti-glaucoma formulation can exacerbate. As such, both glaucoma and OSD frequently coexist. Typical OSD symptoms include ocular discomfort, redness, burning, and dryness, whereas signs include periorbital and eyelid skin pigmentation, conjunctival scarring, and superficial punctate keratitis. Pressure-lowering eyedrops can cause toxic, allergic, and inflammatory reactions on the ocular surface. The latter can result from either preservatives or direct toxicity from the active molecule. Although usually mild, OSD can cause significant symptoms that lead to poor quality of life, decreased compliance to therapy, glaucoma progression, and worse visual outcomes. Given the chronic nature of glaucoma, lack of curative therapy, and subsequent lifelong treatment, addressing OSD is necessary. This manuscript aims to provide an up-to-date overview of OSD's signs, symptoms, and pathogenic mechanisms from glaucoma therapy toxicity.
Collapse
Affiliation(s)
- Raul E. Ruiz-Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Monterrey, Mexico
| | - Nadim S. Azar
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | - Hazem M. Mousa
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | - Manuel E. Quiroga-Garza
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | - Seitaro Komai
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | | | - Cristian Cartes
- Unidad Oftalmología, Departamento de Especialidades, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Victor L. Perez
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
3
|
Mao YJ, Wu JB, Yang ZQ, Zhang YH, Huang ZJ. Nitric oxide donating anti-glaucoma drugs: advances and prospects. Chin J Nat Med 2021; 18:275-283. [PMID: 32402405 DOI: 10.1016/s1875-5364(20)30035-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Glaucoma is a disease that causes irreversible blindness. Reducing intraocular pressure (IOP) is the main treatment at present. Nitric oxide (NO), an endogenous gas signaling molecule, can increase aqueous humor outflow facility, inhibit aqueous humor production thereby reducing IOP, as well as regulate eye blood flow and protect the optic nerve. Therefore, NO donating anti-glaucoma drugs have broad research prospects. In this review, we summarize NO-mediated therapy for glaucoma, and the state of the art of some NO donating molecules, including latanoprostene bunod in market and some other candidate compounds, for the intervention of glaucoma, as well as prospects and challenges ahead in this field.
Collapse
Affiliation(s)
- Yu-Jie Mao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Bing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Ze-Qiu Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Hua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Wang Y, Wang M, Yu P, Zuo L, Zhou Q, Zhou X, Zhu H. MicroRNA-126 Modulates Palmitate-Induced Migration in HUVECs by Downregulating Myosin Light Chain Kinase via the ERK/MAPK Pathway. Front Bioeng Biotechnol 2020; 8:913. [PMID: 32850751 PMCID: PMC7411007 DOI: 10.3389/fbioe.2020.00913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022] Open
Abstract
MicroRNA-126 (miR-126) is an endothelial-specific microRNA that has shown beneficial effects on endothelial dysfunction. However, the underlying molecular mechanism is unclear. The present study evaluated the effects of miR-126 on the cell migration and underlying mechanism in HUVECs treated with palmitate. The present results demonstrated that overexpression of miR-126 was found to decrease cell migration in palmitate-treated HUVECs, with decreased MLCK expression and subsequent decreased phosphorylated MLC level. miR-126 also decreased the phosphorylation of MYPT1 in palmitate-treated HUVECs. In addition, it was demonstrated that miR-126 decreases expression of the NADPH oxidase subunits, p67 and Rac family small GTPase 1 with a subsequent decrease in cell apoptosis. Moreover, the phosphorylation of ERK was reduced by miR-126 in palmitate-induced HUVECs. Taken together, the present study showed that the effect of miR-126 on cell migration and cell apoptosis is mediated through downregulation of MLCK via the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei, China.,Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Mei Wang
- General Department of Hyperbaric Oxygen, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Pei Yu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Li Zuo
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Xiaomei Zhou
- General Department of Hyperbaric Oxygen, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Álvarez-Santos MD, Álvarez-González M, Estrada-Soto S, Bazán-Perkins B. Regulation of Myosin Light-Chain Phosphatase Activity to Generate Airway Smooth Muscle Hypercontractility. Front Physiol 2020; 11:701. [PMID: 32676037 PMCID: PMC7333668 DOI: 10.3389/fphys.2020.00701] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle is a central structure involved in the regulation of airway tone. In addition, it plays an important role in the development of some pathologies generated by alterations in contraction, such as hypercontractility and the airway hyperresponsiveness observed in asthma. The molecular processes associated with smooth muscle contraction are centered around myosin light chain (MLC) phosphorylation, which is controlled by a balance in the activity of myosin light-chain kinase (MLCK) and myosin light-chain phosphatase (MLCP). MLCK activation depends on increasing concentrations of intracellular Ca2+, while MLCP activation is independent of Ca2+. MLCP contains a phosphatase subunit (PP1c) that is regulated through myosin phosphatase target subunit 1 (MYPT1) and other subunits, such as glycogen-associated regulatory subunit and myosin-binding subunit 85 kDa. Interestingly, MLCP inhibition may contribute to exacerbation of smooth muscle contraction by increasing MLC phosphorylation to induce hypercontractility. Many pathways inhibiting MLCP activity in airway smooth muscle have been proposed and are focused on inhibition of PP1c, inhibitory phosphorylation of MYPT1 and dissociation of the PP1c-MYPT1 complex.
Collapse
Affiliation(s)
- Mayra D Álvarez-Santos
- Biology Area, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisol Álvarez-González
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Blanca Bazán-Perkins
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
6
|
Regulation of Airway Smooth Muscle Contraction in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:381-422. [PMID: 31183836 DOI: 10.1007/978-981-13-5895-1_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Airway smooth muscle (ASM) extends from the trachea throughout the bronchial tree to the terminal bronchioles. In utero, spontaneous phasic contraction of fetal ASM is critical for normal lung development by regulating intraluminal fluid movement, ASM differentiation, and release of key growth factors. In contrast, phasic contraction appears to be absent in the adult lung, and regulation of tonic contraction and airflow is under neuronal and humoral control. Accumulating evidence suggests that changes in ASM responsiveness contribute to the pathophysiology of lung diseases with lifelong health impacts.Functional assessments of fetal and adult ASM and airways have defined pharmacological responses and signaling pathways that drive airway contraction and relaxation. Studies using precision-cut lung slices, in which contraction of intrapulmonary airways and ASM calcium signaling can be assessed simultaneously in situ, have been particularly informative. These combined approaches have defined the relative importance of calcium entry into ASM and calcium release from intracellular stores as drivers of spontaneous phasic contraction in utero and excitation-contraction coupling.Increased contractility of ASM in asthma contributes to airway hyperresponsiveness. Studies using animal models and human ASM and airways have characterized inflammatory and other mechanisms underlying increased reactivity to contractile agonists and reduced bronchodilator efficacy of β2-adrenoceptor agonists in severe diseases. Novel bronchodilators and the application of bronchial thermoplasty to ablate increased ASM within asthmatic airways have the potential to overcome limitations of current therapies. These approaches may directly limit excessive airway contraction to improve outcomes for difficult-to-control asthma and other chronic lung diseases.
Collapse
|
7
|
Generation of Spontaneous Tone by Gastrointestinal Sphincters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31183822 DOI: 10.1007/978-981-13-5895-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An important feature of the gastrointestinal (GI) muscularis externa is its ability to generate phasic contractile activity. However, in some GI regions, a more sustained contraction, referred to as "tone," also occurs. Sphincters are muscles oriented in an annular manner that raise intraluminal pressure, thereby reducing or blocking the movement of luminal contents from one compartment to another. Spontaneous tone generation is often a feature of these muscles. Four distinct smooth muscle sphincters are present in the GI tract: the lower esophageal sphincter (LES), the pyloric sphincter (PS), the ileocecal sphincter (ICS), and the internal anal sphincter (IAS). This chapter examines how tone generation contributes to the functional behavior of these sphincters. Historically, tone was attributed to contractile activity arising directly from the properties of the smooth muscle cells. However, there is increasing evidence that interstitial cells of Cajal (ICC) play a significant role in tone generation in GI muscles. Indeed, ICC are present in each of the sphincters listed above. In this chapter, we explore various mechanisms that may contribute to tone generation in sphincters including: (1) summation of asynchronous phasic activity, (2) partial tetanus, (3) window current, and (4) myofilament sensitization. Importantly, the first two mechanisms involve tone generation through summation of phasic events. Thus, the historical distinction between "phasic" versus "tonic" smooth muscles in the GI tract requires revision. As described in this chapter, it is clear that the unique functional role of each sphincter in the GI tract is accompanied by a unique combination of contractile mechanisms.
Collapse
|
8
|
Bordoni B, Simonelli M, Morabito B. The Other Side of the Fascia: The Smooth Muscle Part 1. Cureus 2019; 11:e4651. [PMID: 31312576 PMCID: PMC6624154 DOI: 10.7759/cureus.4651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
According to current scientific standards, the fascia is a connective tissue derived from two separate germ layers, the mesoderm (trunk and limbs, part of the neck) and the ectoderm (cervical tract and skull). The fascia has the property of maintaining the shape and function of its anatomical district, but it also can adapt to mechanical-metabolic stimuli. Smooth muscle and non-voluntary striated musculature originated from the mesoderm have never been properly considered as a type of fascia. They are some of the viscera present in the mediastinum, in the abdomen and in the pelvic floor. This text represents the first article in the international scientific field that discusses the inclusion of some viscera in the context of what is considered fascia, thanks to the efforts of our committee for the definition and nomenclature of the fascial tissue of the Foundation of Osteopathic Research and Clinical Endorsement (FORCE).
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA
| | | | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Milan, ITA
| |
Collapse
|
9
|
Lubomirov LT, Gagov H, Schroeter MM, Wiesner RJ, Franko A. Augmented contractility of murine femoral arteries in a streptozotocin diabetes model is related to increased phosphorylation of MYPT1. Physiol Rep 2019; 7:e13975. [PMID: 30740930 PMCID: PMC6369311 DOI: 10.14814/phy2.13975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with high prevalence, and a major risk factor for macro- and microvascular abnormalities. This study was undertaken to explore the mechanisms of hypercontractility of murine femoral arteries (FA) obtained from mice with streptozotocin (STZ)-induced diabetes and its relation to the phosphorylation profile of the myosin phosphatase target subunit 1, MYPT1. The immunoreactivity of MYPT1 toward phospho-MYPT1-T696, MYPT1-T853, or MYPT1-S695, used as a read out for MYPT1 phosphorylation, has been studied by Western Blotting. Contractile activity of FA from control and STZ mice has been studied by wire myography. At basal conditions (no treatment), the immunoreactivity of MYPT1-T696/T853 was ~2-fold higher in the STZ arteries compared with controls. No changes in MYPT1-T696/853 phosphorylation were observed after stimulation with the Thromboxan-A2 analog, U46619. Neither basal nor U46619-stimulated phosphorylation of MYPT1 at S695 was affected by STZ treatment. Mechanical distensibility and basal tone of FA obtained from STZ animals were similar to controls. Maximal force after treatment of FA with the contractile agonists phenylephrine (10 μmol/L) or U46619 (1 μmol/L) was augmented in the arteries of STZ mice by ~2- and ~1.5-fold, respectively. In summary, our study suggests that development of a hypercontractile phenotype in murine FA in STZ diabetes is at least partially related to an increase in phosphorylation of MLCP at MYPT1-T696/853. Interestingly, the phosphorylation at S695 site was not altered in STZ-induced diabetes, supporting the view that S695 may serve as a sensor for mechanical activity which is not directly involved in tone regulation.
Collapse
Affiliation(s)
| | - Hristo Gagov
- Faculty of BiologySofia University St. Kliment OhridskiSofiaBulgaria
| | | | - Rudolf J. Wiesner
- Institute of Vegetative PhysiologyUniversity of CologneKölnGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)KölnGermany
| | - Andras Franko
- Institute of Vegetative PhysiologyUniversity of CologneKölnGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
- Division of EndocrinologyDepartment of Internal Medicine IVDiabetology, Angiology, Nephrology and Clinical ChemistryUniversity of TübingenTübingenGermany
| |
Collapse
|
10
|
Chang AN, Gao N, Liu Z, Huang J, Nairn AC, Kamm KE, Stull JT. The dominant protein phosphatase PP1c isoform in smooth muscle cells, PP1cβ, is essential for smooth muscle contraction. J Biol Chem 2018; 293:16677-16686. [PMID: 30185619 PMCID: PMC6204911 DOI: 10.1074/jbc.ra118.003083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/30/2018] [Indexed: 12/29/2022] Open
Abstract
Contractile force development of smooth muscle is controlled by balanced kinase and phosphatase activities toward the myosin regulatory light chain (RLC). Numerous biochemical and pharmacological studies have investigated the specificity and regulatory activity of smooth muscle myosin light-chain phosphatase (MLCP) bound to myosin filaments and comprised of the regulatory myosin phosphatase target subunit 1 (MYPT1) and catalytic protein phosphatase 1cβ (PP1cβ) subunits. Recent physiological and biochemical evidence obtained with smooth muscle tissues from a conditional MYPT1 knockout suggests that a soluble, MYPT1-unbound form of PP1cβ may additionally contribute to myosin RLC dephosphorylation and relaxation of smooth muscle. Using a combination of isoelectric focusing and isoform-specific immunoblotting, we found here that more than 90% of the total PP1c in mouse smooth muscles is the β isoform. Moreover, conditional knockout of PP1cα or PP1cγ in adult smooth muscles did not result in an apparent phenotype in mice up to 6 months of age and did not affect smooth muscle contractions ex vivo In contrast, smooth muscle-specific conditional PP1cβ knockout decreased contractile force development in bladder, ileal, and aortic tissues and reduced mouse survival. Bladder smooth muscle tissue from WT mice was selectively permeabilized to remove soluble PP1cβ to measure contributions of total (α-toxin treatment) and myosin-bound (Triton X-100 treatment) phosphatase activities toward phosphorylated RLC in myofilaments. Triton X-100 reduced PP1cβ content by 60% and the rate of RLC dephosphorylation by 2-fold. These results are consistent with the selective dephosphorylation of RLC by both MYPT1-bound and -unbound PP1cβ forms in smooth muscle.
Collapse
Affiliation(s)
- Audrey N Chang
- From the Departments of Physiology and
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040 and
| | - Ning Gao
- From the Departments of Physiology and
| | | | | | - Angus C Nairn
- the Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | | | | |
Collapse
|
11
|
Zhang W, Bhetwal BP, Gunst SJ. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle. J Physiol 2018; 596:3617-3635. [PMID: 29746010 DOI: 10.1113/jp275751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASp). N-WASP transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. ABSTRACT Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase-inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We found that ROCK regulates airway smooth muscle contraction by mediating activation of p21-activated kinase (Pak), a serine-threonine kinase, to promote actin polymerization. Pak catalyses paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signalling module to paxillin, which activates the guanine nucleotide exchange factor (GEF) activity of βPIX towards Cdc42. Cdc42 is required for the activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp), which transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bhupal P Bhetwal
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Zhu L, Li C, Du G, Pan M, Liu G, Pan W, Li X. High glucose upregulates myosin light chain kinase to induce microfilament cytoskeleton rearrangement in hippocampal neurons. Mol Med Rep 2018; 18:216-222. [PMID: 29749555 PMCID: PMC6059672 DOI: 10.3892/mmr.2018.8960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic hyperglycemia leads to myosin light chain kinase (MLCK) upregulation and induces neuronal damage. However, the underlying molecular mechanism of neuronal damage in hyperglycemia has not yet been fully elucidated. In the present study, hippocampal neuronal cells were cultured and treated with a high glucose concentration (45 mmol/l). The results demonstrated that high glucose induced shrinking of the synapses, nuclear shape irregularity and microfilament damage. Filamentous actin (F‑actin) filaments were rearranged, cell apoptosis rate was increased and the protein expression of MLCK and phosphorylated (p)‑MLC was upregulated. The MLCK inhibitor ML‑7 largely reversed the alterations in the microfilament cytoskeleton, inhibited F‑actin depolymerization, reduced apoptosis and downregulated MLCK and p‑MLC protein expression. Overall, these results indicated that high glucose upregulated MLCK to promote F‑actin depolymerization, which induced microfilament cytoskeleton rearrangement in hippocampal neuronal cells.
Collapse
Affiliation(s)
- Liying Zhu
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chengcheng Li
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guiqin Du
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Meixiu Pan
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guoqi Liu
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wei Pan
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xing Li
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
13
|
Yang Q, Fujii W, Kaji N, Kakuta S, Kada K, Kuwahara M, Tsubone H, Ozaki H, Hori M. The essential role of phospho‐T38 CPI‐17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J 2018; 32:2095-2109. [DOI: 10.1096/fj.201700794r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Qunhui Yang
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Shigeru Kakuta
- Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Kodai Kada
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Hirokazu Tsubone
- Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| |
Collapse
|