1
|
Yang C, Isaeva E, Shimada S, Kurth T, Stumpf M, Zheleznova NN, Staruschenko A, Dash RK, Cowley AW. Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity. Am J Physiol Renal Physiol 2024; 327:F435-F449. [PMID: 38779754 PMCID: PMC11460535 DOI: 10.1152/ajprenal.00403.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na+ channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.NEW & NOTEWORTHY This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na+ channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.
Collapse
Affiliation(s)
- Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Satoshi Shimada
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Megan Stumpf
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nadezhda N Zheleznova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Nickerson AJ, Sheng S, Cox NA, Szekely KG, Marciszyn AL, Lam T, Chen J, Gingras S, Kashlan OB, Kirabo A, Hughey RP, Ray EC, Kleyman TR. Loss of the alpha subunit distal furin cleavage site blunts ENaC activation following Na + restriction. J Physiol 2024; 602:4309-4326. [PMID: 39196791 PMCID: PMC11384278 DOI: 10.1113/jp286559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/30/2024] Open
Abstract
Epithelial Na+ channels (ENaCs) are activated by proteolysis of the α and γ subunits at specific sites flanking embedded inhibitory tracts. To examine the role of α subunit proteolysis in channel activation in vivo, we generated mice lacking the distal furin cleavage site in the α subunit (αF2M mice). On a normal Na+ control diet, no differences in ENaC protein abundance in kidney or distal colon were noted between wild-type (WT) and αF2M mice. Patch-clamp analyses revealed similar levels of ENaC activity in kidney tubules, while no physiologically relevant differences in blood chemistry or aldosterone levels were detected. Male αF2M mice did exhibit diminished ENaC activity in the distal colon, as measured by amiloride-sensitive short-circuit current (ISC). Following dietary Na+ restriction, WT and αF2M mice had similar natriuretic and colonic ISC responses to amiloride. However, single-channel activity was significantly lower in kidney tubules from Na+-restricted αF2M mice compared with WT littermates. ENaC α and γ subunit expression in kidney and distal colon were also enhanced in Na+-restricted αF2M vs. WT mice, in association with higher aldosterone levels. These data provide evidence that disrupting α subunit proteolysis impairs ENaC activity in vivo, requiring compensation in response to Na+ restriction. KEY POINTS: The epithelial Na+ channel (ENaC) is activated by proteolytic cleavage in vitro, but key questions regarding the role of ENaC proteolysis in terms of whole-animal physiology remain to be addressed. We studied the in vivo importance of this mechanism by generating a mouse model with a genetic disruption to a key cleavage site in the ENaC's α subunit (αF2M mice). We found that αF2M mice did not exhibit a physiologically relevant phenotype under normal dietary conditions, but have impaired ENaC activation (channel open probability) in the kidney during salt restriction. ENaC function at the organ level was preserved in salt-restricted αF2M mice, but this was associated with higher aldosterone levels and increased expression of ENaC subunits, suggesting compensation was required to maintain homeostasis. These results provide the first evidence that ENaC α subunit proteolysis is a key regulator of channel activity in vivo.
Collapse
Affiliation(s)
- Andrew J Nickerson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natalie A Cox
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kennedy G Szekely
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Allison L Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tracey Lam
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ossama B Kashlan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca P Hughey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Ray EC, Nickerson A, Sheng S, Carrisoza-Gaytan R, Lam T, Marciszyn A, Zhang L, Jordahl A, Bi C, Winfrey A, Kou Z, Gingras S, Kirabo A, Satlin LM, Kleyman TR. Influence of proteolytic cleavage of ENaC's γ subunit upon Na + and K + handling. Am J Physiol Renal Physiol 2024; 326:F1066-F1077. [PMID: 38634134 PMCID: PMC11381034 DOI: 10.1152/ajprenal.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
The epithelial Na+ channel (ENaC) γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short-circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should not be used in isolation to evaluate ENaC activity. Furthermore, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) is activated in vitro by post-translational proteolysis. In vivo, low Na+ or high K+ diets enhance ENaC proteolysis, and proteolysis is hypothesized to contribute to channel activation in these settings. Using a mouse expressing ENaC with disruption of a key proteolytic cleavage site, this study demonstrates that impaired proteolytic activation of ENaC's γ subunit has little impact upon channel open probability or the ability of mice to adapt to low Na+ or high K+ diets.
Collapse
Affiliation(s)
- Evan C Ray
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Andrew Nickerson
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shaohu Sheng
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Rolando Carrisoza-Gaytan
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Tracey Lam
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lei Zhang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Alexa Jordahl
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Chunming Bi
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Aaliyah Winfrey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Zhaohui Kou
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Ray EC, Nickerson A, Sheng S, Carrisoza-Gaytan R, Lam T, Marciszyn A, Zhang L, Jordahl A, Bi C, Winfrey A, Kou Z, Gingras S, Kirabo A, Satlin LM, Kleyman TR. Proteolytic Cleavage of the ENaC γ Subunit - Impact Upon Na + and K + Handling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579964. [PMID: 38405735 PMCID: PMC10888851 DOI: 10.1101/2024.02.12.579964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The ENaC gamma subunit is essential for homeostasis of Na + , K + , and body fluid. Dual subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (P O ), in vitro . Cleavage proximal to the tract occurs at a furin recognition sequence ( 143 RKRR 146 in mouse). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143 RKRR 146 mutation to 143 QQQQ 146 ( Q4 ) in 129/Sv mice would reduce ENaC P O , impair flow-stimulated flux of Na + (J Na ) and K + (J K ) in perfused collecting ducts, reduce colonic amiloride-sensitive short circuit current (I SC ), and impair Na + , K + , and body fluid homeostasis. Immunoblot of Q4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, Q4/Q4 male mice on a low Na + diet did not exhibit altered ENaC P O or flow-induced J Na , though flow-induced J K modestly decreased. Colonic amiloride-sensitive I SC in Q4/Q4 mice was not altered. Q4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na + diet. Blood Na + and K + were unchanged on a regular, low Na + , or high K + diet. These findings suggest that biochemical evidence of gamma subunit cleavage should not be used in isolation to evaluate ENaC activity. Further, factors independent of gamma subunit cleavage modulate channel P O and the influence of ENaC on Na + , K + , and fluid volume homeostasis in 129/Sv mice, in vivo .
Collapse
|
6
|
Nickerson AJ, Mutchler SM, Sheng S, Cox NA, Ray EC, Kashlan OB, Carattino MD, Marciszyn AL, Winfrey A, Gingras S, Kirabo A, Hughey RP, Kleyman TR. Mice lacking γENaC palmitoylation sites maintain benzamil-sensitive Na+ transport despite reduced channel activity. JCI Insight 2023; 8:e172051. [PMID: 37707951 PMCID: PMC10721255 DOI: 10.1172/jci.insight.172051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) control extracellular fluid volume by facilitating Na+ absorption across transporting epithelia. In vitro studies showed that Cys-palmitoylation of the γENaC subunit is a major regulator of channel activity. We tested whether γ subunit palmitoylation sites are necessary for channel function in vivo by generating mice lacking the palmitoylated cysteines (γC33A,C41A) using CRISPR/Cas9 technology. ENaCs in dissected kidney tubules from γC33A,C41A mice had reduced open probability compared with wild-type (WT) littermates maintained on either standard or Na+-deficient diets. Male mutant mice also had higher aldosterone levels than WT littermates following Na+ restriction. However, γC33A,C41A mice did not have reduced amiloride-sensitive Na+ currents in the distal colon or benzamil-induced natriuresis compared to WT mice. We identified a second, larger conductance cation channel in the distal nephron with biophysical properties distinct from ENaC. The activity of this channel was higher in Na+-restricted γC33A,C41A versus WT mice and was blocked by benzamil, providing a possible compensatory mechanism for reduced prototypic ENaC function. We conclude that γ subunit palmitoylation sites are required for prototypic ENaC activity in vivo but are not necessary for amiloride/benzamil-sensitive Na+ transport in the distal nephron or colon.
Collapse
Affiliation(s)
| | | | | | | | | | - Ossama B. Kashlan
- Department of Medicine
- Department of Computational and Systems Biology
| | | | | | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Thomas R. Kleyman
- Department of Medicine
- Department of Cell Biology, and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Hornstrup BG, Hoffmann-Petersen N, Lauridsen TG, Bech JN. Dietary sodium restriction reduces blood pressure in patients with treatment resistant hypertension. BMC Nephrol 2023; 24:274. [PMID: 37726656 PMCID: PMC10507975 DOI: 10.1186/s12882-023-03333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE Patients with treatment resistant hypertension (TRH) are at particular risk of cardiovascular disease. Life style modification, including sodium restriction, is an important part of the treatment of these patients. We aimed to analyse if self-performed dietary sodium restriction could be implemented in patients with TRH and to evaluate the effect of this intervention on blood pressure (BP). Moreover, we aimed to examine if mechanisms involving nitric oxide, body water content and BNP, renal function and handling of sodium were involved in the effect on nocturnal and 24-h BP. Also, measurement of erythrocyte sodium sensitivity was included as a possible predictor for the effect of sodium restriction on BP levels. PATIENTS AND METHODS TRH patients were included for this interventional four week study: two weeks on usual diet and two weeks on self-performed sodium restricted diet with supplementary handed out sodium-free bread. At the end of each period, 24-h BP and 24-h urine collections (sodium, potassium, ENaC) were performed, blood samples (BNP, NOx, salt blood test) were drawn, and bio impedance measurements were made. RESULTS Fifteen patients, 11 males, with a mean age of 59 years were included. After sodium restriction, urinary sodium excretion decreased from 186 (70) to 91 [51] mmol/24-h, and all but one reduced sodium excretion. Nocturnal and 24-h systolic BP were significantly reduced (- 8 and - 10 mmHg, respectively, p < 0.05). NOx increased, BNP and extracellular water content decreased, all significantly. Change in NOx correlated to the change in 24-h systolic BP. BP response after sodium restriction was not related to sodium sensitivity examined by salt blood test. CONCLUSION Self-performed dietary sodium restriction was feasible in a population of patients with TRH, and BP was significantly reduced. Increased NOx synthesis may be involved in the BP lowering effect of sodium restriction. TRIAL REGISTRATION The study was registered in Clinical trials with ID: NCT06022133.
Collapse
Affiliation(s)
- Bodil G Hornstrup
- University Clinic in Nephrology and Hypertension, Gødstrup Hospital and Aarhus University, Hospitalsparken 15, Herning, DK-7400, Denmark.
- Department of Medicine, Gødstrup Hospital, Herning, Denmark.
| | - Nikolai Hoffmann-Petersen
- University Clinic in Nephrology and Hypertension, Gødstrup Hospital and Aarhus University, Hospitalsparken 15, Herning, DK-7400, Denmark
| | - Thomas Guldager Lauridsen
- University Clinic in Nephrology and Hypertension, Gødstrup Hospital and Aarhus University, Hospitalsparken 15, Herning, DK-7400, Denmark
| | - Jesper N Bech
- University Clinic in Nephrology and Hypertension, Gødstrup Hospital and Aarhus University, Hospitalsparken 15, Herning, DK-7400, Denmark
- Department of Medicine, Gødstrup Hospital, Herning, Denmark
| |
Collapse
|
8
|
Yu Y, Wang P, Ren Z, Xue Y, Jia Y, Wang W, Liu M, Pan K, Xiao L, Ji D, Wang X. A low-salt diet with candesartan administration is associated with acute kidney injury in nephritis by increasing nitric oxide. Biomed Pharmacother 2023; 161:114484. [PMID: 36921530 DOI: 10.1016/j.biopha.2023.114484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
A low-salt diet may activate the renin-angiotensin-aldosterone system (RAAS) and is often applied simultaneously with RAAS inhibitors, especially for treatment of proteinuric nephritis. To explore the effect of a low-salt diet combined with angiotensin receptor blockers (ARB) on kidney function, the proteinuric nephritis model was induced by single intravenous injection of doxorubicin, and then the SD rats were administrated with candesartan intraperitoneal injection and fed with different salt diets. Rats with low-salt plus candesartan, not either alone, experienced acute kidney injury (AKI) at day 7 and could not self-restore when extending the experiment time from 7 days to 21 days, unless switching low-salt to normal-salt. Among three nitric oxide synthetases (NOS), endothelial NOS (eNOS) was obviously elevated and PI3K-Akt-eNOS signal pathway was activated. NG-Nitro-L-Arginine Methyl Ester (L-NAME), an eNOS inhibitor, reversed the decreased blood pressure and recovered the kidney dysfunction induced by low-salt with candesartan. The increased TUNEL-positive cells, Bax/Bcl-2 and cleaved-caspase3 protein abundance was ameliorated by L-NAME in vivo. In vitro, sodium nitroprusside, a nitric oxide donor, can also increase Bax/Bcl-2 and cleaved-caspase3 protein level in HK-2 cell. Thus, low-salt diet combined with candesartan in nephritis rats led to AKI, and the mechanism involved the increase of eNOS/NO, which linked to the decrease of blood pressure and the increase of apoptosis. This study provides practical guidance for salt intake in cases of RAS inhibitor usage clinically.
Collapse
Affiliation(s)
- Yanting Yu
- Department of Nephrology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Wang
- The Core Laboratory, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- The Core Laboratory, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xue
- The Core Laboratory, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yutao Jia
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwan Wang
- The Core Laboratory, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingda Liu
- The Core Laboratory, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Kueiching Pan
- Department of Nursing, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Leijuan Xiao
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| | - Daxi Ji
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaoyan Wang
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China; The Core Laboratory, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Palmer LG. How Does Aldosterone Work? KIDNEY360 2023; 4:131-133. [PMID: 36821603 PMCID: PMC10103331 DOI: 10.34067/kid.0000000000000058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medicine, New York, New York
- Correspondence: Dr. Lawrence G. Palmer, Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Ave., Room C-501 C. New York, NY 10065.
| |
Collapse
|
10
|
Palmer LG. Directing two-way traffic in the kidney: A tale of two ions. J Gen Physiol 2022; 154:213433. [PMID: 36048011 PMCID: PMC9437110 DOI: 10.1085/jgp.202213179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The kidneys regulate levels of Na+ and K+ in the body by varying urinary excretion of the electrolytes. Since transport of each of the two ions can affect the other, controlling both at the same time is a complex task. The kidneys meet this challenge in two ways. Some tubular segments change the coupling between Na+ and K+ transport. In addition, transport of Na+ can shift between segments where it is coupled to K+ reabsorption and segments where it is coupled to K+ secretion. This permits the kidney to maintain electrolyte balance with large variations in dietary intake.
Collapse
Affiliation(s)
- Lawrence G. Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, NY,Correspondence to Lawrence G. Palmer:
| |
Collapse
|
11
|
Wörner S, Bohnert BN, Wörn M, Xiao M, Janessa A, Birkenfeld AL, Amann K, Daniel C, Artunc F. Renal effects of the serine protease inhibitor aprotinin in healthy conscious mice. Acta Pharmacol Sin 2022; 43:111-120. [PMID: 33758357 PMCID: PMC8724274 DOI: 10.1038/s41401-021-00628-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Treatment with aprotinin, a broad-spectrum serine protease inhibitor with a molecular weight of 6512 Da, was associated with acute kidney injury, which was one of the reasons for withdrawal from the market in 2007. Inhibition of renal serine proteases regulating the epithelial sodium channel ENaC could be a possible mechanism. Herein, we studied the effect of aprotinin in wild-type 129S1/SvImJ mice on sodium handling, tubular function, and integrity under a control and low-salt diet. Mice were studied in metabolic cages, and aprotinin was delivered by subcutaneously implanted sustained release pellets (2 mg/day over 10 days). Mean urinary aprotinin concentration ranged between 642 ± 135 (day 2) and 127 ± 16 (day 8) µg/mL . Aprotinin caused impaired sodium preservation under a low-salt diet while stimulating excessive hyperaldosteronism and unexpectedly, proteolytic activation of ENaC. Aprotinin inhibited proximal tubular function leading to glucosuria and proteinuria. Plasma urea and cystatin C concentration increased significantly under aprotinin treatment. Kidney tissues from aprotinin-treated mice showed accumulation of intracellular aprotinin and expression of the kidney injury molecule 1 (KIM-1). In electron microscopy, electron-dense deposits were observed. There was no evidence for kidney injury in mice treated with a lower aprotinin dose (0.5 mg/day). In conclusion, high doses of aprotinin exert nephrotoxic effects by accumulation in the tubular system of healthy mice, leading to inhibition of proximal tubular function and counterregulatory stimulation of ENaC-mediated sodium transport.
Collapse
|
12
|
Bohnert BN, Essigke D, Janessa A, Schneider JC, Wörn M, Kalo MZ, Xiao M, Kong L, Omage K, Hennenlotter J, Amend B, Birkenfeld AL, Artunc F. Experimental nephrotic syndrome leads to proteolytic activation of the epithelial Na + channel in the mouse kidney. Am J Physiol Renal Physiol 2021; 321:F480-F493. [PMID: 34423678 DOI: 10.1152/ajprenal.00199.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteolytic activation of the renal epithelial Na+ channel (ENaC) involves cleavage events in its α- and γ-subunits and is thought to mediate Na+ retention in nephrotic syndrome (NS). However, the detection of proteolytically processed ENaC in kidney tissue from nephrotic mice has been elusive so far. We used a refined Western blot technique to reliably discriminate full-length α-ENaC and γ-ENaC and their cleavage products after proteolysis at their proximal and distal cleavage sites (designated from the NH2-terminus), respectively. Proteolytic ENaC activation was investigated in kidneys from mice with experimental NS induced by doxorubicin or inducible podocin deficiency with or without treatment with the serine protease inhibitor aprotinin. Nephrotic mice developed Na+ retention and increased expression of fragments of α-ENaC and γ-ENaC cleaved at both the proximal cleavage site and, more prominently, the distal cleavage site, respectively. Treatment with aprotinin but not with the mineralocorticoid receptor antagonist canrenoate prevented Na+ retention and upregulation of the cleavage products in nephrotic mice. Increased expression of cleavage products of α-ENaC and γ-ENaC was similarly found in healthy mice treated with a low-salt diet, sensitive to mineralocorticoid receptor blockade. In human nephrectomy specimens, γ-ENaC was found in the full-length form and predominantly cleaved at its distal cleavage site. In conclusion, murine experimental NS leads to aprotinin-sensitive proteolytic activation of ENaC at both proximal and, more prominently, distal cleavage sites of its α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.NEW & NOTEWORTHY This study demonstrates that murine experimental nephrotic syndrome leads to aprotinin-sensitive proteolytic activation of the epithelial Na+ channel at both the α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.
Collapse
Affiliation(s)
- Bernhard N Bohnert
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Tübingen, Tübingen, Germany.,German Center for Diabetes Research, University Tübingen, Tübingen, Germany
| | - Daniel Essigke
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Janessa
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jonas C Schneider
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Matthias Wörn
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - M Zaher Kalo
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Mengyun Xiao
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lingsi Kong
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Kingsley Omage
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Bastian Amend
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Tübingen, Tübingen, Germany.,German Center for Diabetes Research, University Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Tübingen, Tübingen, Germany.,German Center for Diabetes Research, University Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Elijovich F, Kleyman TR, Laffer CL, Kirabo A. Immune Mechanisms of Dietary Salt-Induced Hypertension and Kidney Disease: Harry Goldblatt Award for Early Career Investigators 2020. Hypertension 2021; 78:252-260. [PMID: 34232678 DOI: 10.1161/hypertensionaha.121.16495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Salt sensitivity of blood pressure is an independent risk factor for cardiovascular mortality not only in hypertensive but also in normotensive adults. The diagnosis of salt sensitivity of blood pressure is not feasible in the clinic due to lack of a simple diagnostic test, making it difficult to investigate therapeutic strategies. Most research efforts to understand the mechanisms of salt sensitivity of blood pressure have focused on renal regulation of sodium. However, salt retention or plasma volume expansion is not different between salt-sensitive and salt-resistant individuals. In addition, over 70% of extracellular fluid is interstitial and, therefore, not directly controlled by renal salt and water excretion. We discuss in this review how the seminal work by Harry Goldblatt paved the way for our attempts at understanding the mechanisms that underlie immune activation by salt in hypertension. We describe our findings that sodium, entering antigen-presenting cells via an epithelial sodium channel, triggers a PKC (protein kinase C)- and SGK1 (serum/glucocorticoid kinase 1)-stimulated activation of nicotinamide adenine dinucleotide phosphate oxidase, which, in turn, enhances lipid oxidation with generation of highly reactive isolevuglandins. Isolevuglandins adduct to proteins, with the potential to generate degraded peptide neoantigens. Activated antigen-presenting cells increase production of the TH17 polarizing cytokines, IL (interleukin)-6, IL-1β, and IL-23, which leads to differentiation and proliferation of IL-17A producing T cells. Our laboratory and others have shown that this cytokine contributes to hypertension. We also discuss where this sodium activation of antigen-presenting cells may occur in vivo and describe the multiple experiments, with pharmacological antagonists and knockout mice that we used to unravel this sequence of events in rodents. Finally, we describe experiments in mononuclear cells obtained from normotensive or hypertensive volunteers, which confirm that analogous processes of salt-induced immunity take place in humans.
Collapse
Affiliation(s)
- Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (F.E., C.L.L., A.K.)
| | - Thomas R Kleyman
- Departments of Medicine, Cell Biology, Pharmacology, and Chemical Biology, University of Pittsburgh, PA (T.R.K.)
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (F.E., C.L.L., A.K.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (F.E., C.L.L., A.K.)
| |
Collapse
|
14
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Pechère-Bertschi A, Olivier V, Burnier M, Udwan K, de Seigneux S, Ponte B, Maillard M, Martin PY, Feraille E. Dietary sodium intake does not alter renal potassium handling and blood pressure in healthy young males. Nephrol Dial Transplant 2021; 37:548-557. [PMID: 33492394 PMCID: PMC8875469 DOI: 10.1093/ndt/gfaa381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/03/2022] Open
Abstract
Background The effects of sodium (Na+) intakes on renal handling of potassium (K+) are insufficiently studied. Methods We assessed the effect of Na+ on renal K+ handling in 16 healthy males assigned to three 7-day periods on low salt diet [LSD, 3 g sodium chloride (NaCl)/day], normal salt diet (NSD, 6 g NaCl/day) and high salt diet (HSD, 15 g NaCl/day), with constant K+ intake. Contributions of distal NaCl co-transporter and epithelial Na+ channel in the collecting system on K+ and Na+ handling were assessed at steady state by acute response to 100 mg oral hydrochlorothiazide and with addition of 10 mg of amiloride to hydrochlorothiazide, respectively. Results Diurnal blood pressure slightly increased from 119.30 ± 7.95 mmHg under LSD to 123.00 ± 7.50 mmHg (P = 0.02) under HSD, while estimated glomerular filtration rate increased from 133.20 ± 34.68 mL/min under LSD to 187.00 ± 49.10 under HSD (P = 0.005). The 24-h K+ excretion remained stable on all Na+ intakes (66.28 ± 19.12 mmol/24 h under LSD; 55.91 ± 21.17 mmol/24 h under NSD; and 66.81 ± 20.72 under HSD, P = 0.9). The hydrochlorothiazide-induced natriuresis was the highest under HSD (30.22 ± 12.53 mmol/h) and the lowest under LSD (15.38 ± 8.94 mmol/h, P = 0.02). Hydrochlorothiazide increased kaliuresis and amiloride decreased kaliuresis similarly on all three diets. Conclusions Neither spontaneous nor diuretic-induced K+ excretion was influenced by Na+ intake in healthy male subjects. However, the respective contribution of the distal convoluted tubule and the collecting duct to renal Na+ handling was dependent on dietary Na+ intake.
Collapse
Affiliation(s)
| | - Valérie Olivier
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, CHUV, Lausanne, Switzerland
| | - Khalil Udwan
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Sophie de Seigneux
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Belén Ponte
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland
| | - Marc Maillard
- Service of Nephrology and Hypertension, CHUV, Lausanne, Switzerland
| | - Pierre-Yves Martin
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Eric Feraille
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
16
|
Ayasse N, Berg P, Leipziger J, Sørensen MV. ENaC expression correlates with the acute furosemide-induced K + excretion. Physiol Rep 2021; 9:e14668. [PMID: 33410279 PMCID: PMC7788322 DOI: 10.14814/phy2.14668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In the aldosterone-sensitive distal nephron (ASDN), epithelial sodium channel (ENaC)-mediated Na+ absorption drives K+ excretion. K+ excretion depends on the delivery of Na+ to the ASDN and molecularly activated ENaC. Furosemide is known as a K+ wasting diuretic as it greatly enhances Na+ delivery to the ASDN. Here, we studied the magnitude of acute furosemide-induced kaliuresis under various states of basal molecular ENaC activity. METHODS C57/Bl6J mice were subjected to different dietary regimens that regulate molecular ENaC expression and activity levels. The animals were anesthetized and bladder-catheterized. Diuresis was continuously measured before and after administration of furosemide (2 µg/g BW) or benzamil (0.2 µg/g BW). Flame photometry was used to measure urinary [Na+ ] and [K+ ]. The kidneys were harvested and, subsequently, ENaC expression and cleavage activation were determined by semiquantitative western blotting. RESULTS A low K+ and a high Na+ diet markedly suppressed ENaC protein expression, cleavage activation, and furosemide-induced kaliuresis. In contrast, furosemide-induced kaliuresis was greatly enhanced in animals fed a high K+ or low Na+ diet, conditions with increased ENaC expression. The furosemide-induced diuresis was similar in all dietary groups. CONCLUSION Acute furosemide-induced kaliuresis differs greatly and depends on the a priori molecular expression level of ENaC. Remarkably, it can be even absent in animals fed a high Na+ diet, despite a marked increase of tubular flow and urinary Na+ excretion. This study provides auxiliary evidence that acute ENaC-dependent K+ excretion requires both Na+ as substrate and molecular activation of ENaC.
Collapse
Affiliation(s)
- Niklas Ayasse
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - Peder Berg
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - Jens Leipziger
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
- Aarhus Institute of Advanced StudiesAarhus UniversityAarhus CDenmark
| | | |
Collapse
|
17
|
Patinha D, Carvalho C, Persson P, Pihl L, Fasching A, Friederich-Persson M, O'Neill J, Palm F. Determinants of renal oxygen metabolism during low Na + diet: effect of angiotensin II AT 1 and aldosterone receptor blockade. J Physiol 2020; 598:5573-5587. [PMID: 32857872 DOI: 10.1113/jp280481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Reducing Na+ intake reduces the partial pressure of oxygen in the renal cortex and activates the renin-angiotensin-aldosterone system. In the absence of high blood pressure, these consequences of dietary Na+ reduction may be detrimental for the kidney. In a normotensive animal experimental model, reducing Na+ intake for 2 weeks increased renal oxygen consumption, which was normalized by mineralocorticoid receptor blockade. Furthermore, blockade of the angiotensin II AT1 receptor restored cortical partial pressure of oxygen by improving oxygen delivery. This shows that increased activity of the renin-angiotensin-aldosterone system contributes to increased oxygen metabolism in the kidney after 2 weeks of a low Na+ diet. The results provide insights into dietary Na+ restriction in the absence of high blood pressure, and its consequences for the kidney. ABSTRACT Reduced Na+ intake reduces the P O 2 (partial pressure of oxygen) in the renal cortex. Upon reduced Na+ intake, reabsorption along the nephron is adjusted with activation of the renin-angiotensin-aldosterone system (RAAS). Thus, we studied the effect of reduced Na+ intake on renal oxygen homeostasis and function in rats, and the impact of intrarenal angiotensin II AT1 receptor blockade using candesartan and mineralocorticoid receptor blockade using canrenoic acid potassium salt (CAP). Male Sprague-Dawley rats were fed standard rat chow containing normal (0.25%) and low (0.025%) Na+ for 2 weeks. The animals were anaesthetized (thiobutabarbital 120 mg kg-1 ) and surgically prepared for kidney oxygen metabolism and function studies before and after acute intrarenal arterial infusion of candesartan (4.2 μg kg-1 ) or intravenous infusion of CAP (20 mg kg-1 ). Baseline mean arterial pressure and renal blood flow were similar in both dietary groups. Fractional Na+ excretion and cortical oxygen tension were lower and renal oxygen consumption was higher in low Na+ groups. Neither candesartan nor CAP affected arterial pressure. Renal blood flow and cortical oxygen tension increased in both groups after candesartan in the low Na+ group. Fractional Na+ excretion was increased and oxygen consumption reduced in the low Na+ group after CAP. These results suggest that blockade of angiotensin II AT1 receptors has a major impact upon oxygen delivery during normal and low Na+ conditions, while aldosterone receptors mainly affect oxygen metabolism following 2 weeks of a low Na+ diet.
Collapse
Affiliation(s)
- Daniela Patinha
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, UK.,Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Carla Carvalho
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Patrik Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Liselotte Pihl
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Angelica Fasching
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Malou Friederich-Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Julie O'Neill
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Yang L, Frindt G, Xu Y, Uchida S, Palmer LG. Aldosterone-dependent and -independent regulation of Na + and K + excretion and ENaC in mouse kidneys. Am J Physiol Renal Physiol 2020; 319:F323-F334. [PMID: 32628540 DOI: 10.1152/ajprenal.00204.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated the regulation of Na+ and K+ excretion and the epithelial Na+ channel (ENaC) in mice lacking the gene for aldosterone synthase (AS) using clearance methods to assess excretion and electrophysiology and Western blot analysis to test for ENaC activity and processing. After 1 day of dietary Na+ restriction, AS-/- mice lost more Na+ in the urine than AS+/+ mice did. After 1 wk on this diet, both genotypes strongly reduced urinary Na+ excretion, but creatinine clearance decreased only in AS-/- mice. Only AS+/+ animals exhibited increased ENaC function, assessed as amiloride-sensitive whole cell currents in collecting ducts or cleavage of αENaC and γENaC in Western blots. To assess the role of aldosterone in the excretion of a K+ load, animals were fasted overnight and refed with high-K+ or low-K+ diets for 5 h. Both AS+/+ and AS-/- mice excreted a large amount of K+ during this period. In both phenotypes the excretion was benzamil sensitive, indicating increased K+ secretion coupled to ENaC-dependent Na+ reabsorption. However, the increase in plasma K+ under these conditions was much larger in AS-/- animals than in AS+/+ animals. In both groups, cleavage of αENaC and γENaC increased. However, Na+ current measured ex vivo in connecting tubules was enhanced only in AS+/+ mice. We conclude that in the absence of aldosterone, mice can conserve Na+ without ENaC activation but at the expense of diminished glomerular filtration rate. Excretion of a K+ load can be accomplished through aldosterone-independent upregulation of ENaC, but aldosterone is required to excrete the excess K+ without hyperkalemia.
Collapse
Affiliation(s)
- Lei Yang
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Yuanyuan Xu
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York.,Department of Cardiology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
19
|
Kleyman TR, Eaton DC. Regulating ENaC's gate. Am J Physiol Cell Physiol 2020; 318:C150-C162. [PMID: 31721612 PMCID: PMC6985836 DOI: 10.1152/ajpcell.00418.2019] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Epithelial Na+ channels (ENaCs) are members of a family of cation channels that function as sensors of the extracellular environment. ENaCs are activated by specific proteases in the biosynthetic pathway and at the cell surface and remove embedded inhibitory tracts, which allows channels to transition to higher open-probability states. Resolved structures of ENaC and an acid-sensing ion channel revealed highly organized extracellular regions. Within the periphery of ENaC subunits are unique domains formed by antiparallel β-strands containing the inhibitory tracts and protease cleavage sites. ENaCs are inhibited by Na+ binding to specific extracellular site(s), which promotes channel transition to a lower open-probability state. Specific inositol phospholipids and channel modification by Cys-palmitoylation enhance channel open probability. How these regulatory factors interact in a concerted manner to influence channel open probability is an important question that has not been resolved. These various factors are reviewed, and the impact of specific factors on human disorders is discussed.
Collapse
Affiliation(s)
- Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, and Departments of Cell Biology and of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
20
|
Ware AW, Rasulov SR, Cheung TT, Lott JS, McDonald FJ. Membrane trafficking pathways regulating the epithelial Na + channel. Am J Physiol Renal Physiol 2019; 318:F1-F13. [PMID: 31657249 DOI: 10.1152/ajprenal.00277.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Renal Na+ reabsorption, facilitated by the epithelial Na+ channel (ENaC), is subject to multiple forms of control to ensure optimal body blood volume and pressure through altering both the ENaC population and activity at the cell surface. Here, the focus is on regulating the number of ENaCs present in the apical membrane domain through pathways of ENaC synthesis and targeting to the apical membrane as well as ENaC removal, recycling, and degradation. Finally, the mechanisms by which ENaC trafficking pathways are regulated are summarized.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib R Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Wang XP, Im SJ, Balchak DM, Montalbetti N, Carattino MD, Ray EC, Kashlan OB. Murine epithelial sodium (Na +) channel regulation by biliary factors. J Biol Chem 2019; 294:10182-10193. [PMID: 31092599 PMCID: PMC6664190 DOI: 10.1074/jbc.ra119.007394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
The epithelial sodium channel (ENaC) mediates Na+ transport in several epithelia, including the aldosterone-sensitive distal nephron, distal colon, and biliary epithelium. Numerous factors regulate ENaC activity, including extracellular ligands, post-translational modifications, and membrane-resident lipids. However, ENaC regulation by bile acids and conjugated bilirubin, metabolites that are abundant in the biliary tree and intestinal tract and are sometimes elevated in the urine of individuals with advanced liver disease, remains poorly understood. Here, using a Xenopus oocyte-based system to express and functionally study ENaC, we found that, depending on the bile acid used, bile acids both activate and inhibit mouse ENaC. Whether bile acids were activating or inhibiting was contingent on the position and orientation of specific bile acid moieties. For example, a hydroxyl group at the 12-position and facing the hydrophilic side (12α-OH) was activating. Taurine-conjugated bile acids, which have reduced membrane permeability, affected ENaC activity more strongly than did their more membrane-permeant unconjugated counterparts, suggesting that bile acids regulate ENaC extracellularly. Bile acid-dependent activation was enhanced by amino acid substitutions in ENaC that depress open probability and was precluded by proteolytic cleavage that increases open probability, consistent with an effect of bile acids on ENaC open probability. Bile acids also regulated ENaC in a cortical collecting duct cell line, mirroring the results in Xenopus oocytes. We also show that bilirubin conjugates activate ENaC. These results indicate that ENaC responds to compounds abundant in bile and that their ability to regulate this channel depends on the presence of specific functional groups.
Collapse
Affiliation(s)
- Xue-Ping Wang
- From the Renal-Electrolyte Division, Department of Medicine
| | | | | | | | - Marcelo D Carattino
- From the Renal-Electrolyte Division, Department of Medicine
- the Department of Cell Biology and Molecular Physiology, and
| | - Evan C Ray
- From the Renal-Electrolyte Division, Department of Medicine
| | - Ossama B Kashlan
- From the Renal-Electrolyte Division, Department of Medicine,
- the Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
22
|
Mutchler SM, Kleyman TR. New insights regarding epithelial Na+ channel regulation and its role in the kidney, immune system and vasculature. Curr Opin Nephrol Hypertens 2019; 28:113-119. [PMID: 30585851 PMCID: PMC6349474 DOI: 10.1097/mnh.0000000000000479] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review describes recent findings regarding the epithelial Na channel (ENaC) and its roles in physiologic and pathophysiologic states. We discuss new insights regarding ENaC's structure, its regulation by various factors, its potential role in hypertension and nephrotic syndrome, and its roles in the immune system and vasculature. RECENT FINDINGS A recently resolved structure of ENaC provides clues regarding mechanisms of ENaC activation by proteases. The use of amiloride in nephrotic syndrome, and associated complications are discussed. ENaC is expressed in dendritic cells and contributes to immune system activation and increases in blood pressure in response to NaCl. ENaC is expressed in endothelial ENaC and has a role in regulating vascular tone. SUMMARY New findings have emerged regarding ENaC and its role in the kidney, immune system, and vasculature.
Collapse
Affiliation(s)
- Stephanie M. Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
23
|
Sheng S, Chen J, Mukherjee A, Yates ME, Buck TM, Brodsky JL, Tolino MA, Hughey RP, Kleyman TR. Thumb domains of the three epithelial Na + channel subunits have distinct functions. J Biol Chem 2018; 293:17582-17592. [PMID: 30228189 PMCID: PMC6231141 DOI: 10.1074/jbc.ra118.003618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/13/2018] [Indexed: 01/10/2023] Open
Abstract
The epithelial Na+ channel (ENaC) possesses a large extracellular domain formed by a β-strand core enclosed by three peripheral α-helical subdomains, which have been dubbed thumb, finger, and knuckle. Here we asked whether the ENaC thumb domains play specific roles in channel function. To this end, we examined the characteristics of channels lacking a thumb domain in an individual ENaC subunit (α, β, or γ). Removing the γ subunit thumb domain had no effect on Na+ currents when expressed in Xenopus oocytes, but moderately reduced channel surface expression. In contrast, ENaCs lacking the α or β subunit thumb domain exhibited significantly reduced Na+ currents along with a large reduction in channel surface expression. Moreover, channels lacking an α or γ thumb domain exhibited a diminished Na+ self-inhibition response, whereas this response was retained in channels lacking a β thumb domain. In turn, deletion of the α thumb domain had no effect on the degradation rate of the immature α subunit as assessed by cycloheximide chase analysis. However, accelerated degradation of the immature β subunit and mature γ subunit was observed when the β or γ thumb domain was deleted, respectively. Our results suggest that the thumb domains in each ENaC subunit are required for optimal surface expression in oocytes and that the α and γ thumb domains both have important roles in the channel's inhibitory response to external Na+ Our findings support the notion that the extracellular helical domains serve as functional modules that regulate ENaC biogenesis and activity.
Collapse
Affiliation(s)
- Shaohu Sheng
- From the Renal-Electrolyte Division, Department of Medicine and
| | - Jingxin Chen
- From the Renal-Electrolyte Division, Department of Medicine and
| | | | | | | | | | | | - Rebecca P Hughey
- From the Renal-Electrolyte Division, Department of Medicine and
- Cell Biology
- Microbiology and Molecular Genetics, and
| | - Thomas R Kleyman
- From the Renal-Electrolyte Division, Department of Medicine and
- Cell Biology
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|