1
|
Jaramillo-Torres MJ, Limpert RH, Butak WJ, Cohen KE, Whitaker-Hilbig AA, Durand MJ, Freed JK, SenthilKumar G. Promoting Resiliency to Stress in the Vascular Endothelium. Basic Clin Pharmacol Toxicol 2025; 136:e70001. [PMID: 39936288 DOI: 10.1111/bcpt.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
By 2050, roughly 60% of the population will have cardiovascular disease. While a substantial amount of data has been generated over the last few decades that has aided in our understanding of cardiovascular disease pathology, less is known about how to increase resiliency to cardiovascular risk factors that individuals are exposed to on a daily basis. The vascular endothelium is considered the first line of defence against circulating noxious stimuli and, when dysfunctional, is an early risk factor for the development of cardiovascular disease. A vast amount of data has been generated demonstrating how external stress impairs the vascular endothelium; however, there is a paucity of knowledge regarding how to amplify protective pathways and ward off stress and the development of disease, which is the focus of this review. Targeting known protective endothelial pathways may be feasible to increase resiliency to vascular stress. Leveraging stress to boost defence mechanisms within the vascular endothelium is also proposed and may help identify novel therapeutic targets to protect individuals from the stress of everyday life.
Collapse
Affiliation(s)
- Maria J Jaramillo-Torres
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rachel H Limpert
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - William J Butak
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Katie E Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alicen A Whitaker-Hilbig
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew J Durand
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Julie K Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Alkhaldy HY, Yahya AO, Algarni AM, Bakheet OSE, Assiri M, Saboor M. JAK2 Mutation Assessment in Thrombotic Events at Unusual Anatomical Sites: Insights from a High-Altitude Cohort. Int J Gen Med 2024; 17:4551-4558. [PMID: 39398483 PMCID: PMC11470770 DOI: 10.2147/ijgm.s480705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Thrombosis stands as a significant contributor to both morbidity and mortality in individuals afflicted with myeloproliferative neoplasms. This retrospective study investigated the association between JAK2 mutations and venous thrombosis at unusual sites, and in young individuals with ischemic stroke, residing at high altitudes in the Aseer region, Saudi Arabia. Patients and Methods Data were collected from two high-altitude referral hospitals over three years (2020-2022). Records of all JAK2 mutation tests were reviewed. Those requested as part of evaluation of thrombosis events, without known myeloproliferative neoplasms (MPNs) were analysed. Results Among the 208 JAK2 tests, 40 (19.2%) were linked to thrombotic event evaluations. The cohort, with a median age of 41, included 17 (42.7%) males and 23 females, with 57.5% having completely normal complete blood counts (CBC). Thrombotic events were divided between splanchnic vein thrombosis (36.6%) and cerebral thrombosis (34.1%), while the remaining cases involved unprovoked deep vein thromboses/pulmonary embolisms and portal vein thrombosis. Only 2 (5%) participants tested positive for JAK2 mutations: a 17-year-old male diagnosed concurrently with polycythemia vera after renal vein thrombosis and a 31-year-old woman with hepatic vein thrombosis and a normal CBC. Conclusion This study reveals that JAK2 mutations are infrequently found in high-altitude patients with unprovoked DVT, PE, or atypical thrombosis. While JAK2 testing is notably relevant for splanchnic vein thrombosis, its routine use for other thrombotic events, particularly with normal CBC results, remains uncertain. Given the study's limitations, further prospective research with larger cohorts is needed to refine guidelines for JAK2 mutation testing in various thrombotic contexts.
Collapse
Affiliation(s)
- Husain Yahya Alkhaldy
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayel Omar Yahya
- Division of Adult Hematology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | - Omayma S E Bakheet
- Department of Laboratory Medicine and Blood Bank, Aseer Central Hospital, Abha, Saudi Arabia
| | | | - Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Savina Y, Pichon AP, Lemaire L, Howe CA, Ulliel-Roche M, Skinner S, Nader E, Guillot N, Stauffer É, Roustit M, Hancco I, Robach P, Esteve F, Pialoux V, Perger E, Parati G, Ainslie PN, Doutreleau S, Connes P, Verges S, Brugniaux JV. Micro- and macrovascular function in the highest city in the world: a cross sectional study. LANCET REGIONAL HEALTH. AMERICAS 2024; 38:100887. [PMID: 39381083 PMCID: PMC11459627 DOI: 10.1016/j.lana.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/04/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Background Since vascular responses to hypoxia in both healthy high-altitude natives and chronic mountain sickness (a maladaptive high-altitude pathology characterised by excessive erythrocytosis and the presence of symptoms-CMS) remain unclear, the role of inflammation and oxidative/nitrosative stress on the endothelium-dependent and -independent responses in both the micro- and macrocirculation, in healthy Andeans at different altitudes and in CMS patients, was examined. Methods 94 men were included: 18 lowlanders (LL), 38 healthy highlanders permanently living at 3800 m (n = 21-HL-3800) or in La Rinconada, the highest city in the world (5100-5300 m) (n = 17-HL-5100/No CMS). Moreover, 14 participants with mild (Mild CMS) and 24 with moderate to severe CMS (Mod/Sev CMS) were recruited. All undertook two reactivity tests: i) local thermal hyperaemia (microcirculation) and ii) flow-mediated dilation (macrocirculation). Endothelium-independent function (glyceryl trinitrate) was also assessed only in La Rinconada. Findings Conductance and skin blood flow velocity during the microcirculation test, as well as macrocirculation progressively decreased with altitude (LL > HL-3800 > HL-5100/No CMS). CMS also induced a decrease in macrocirculation (HL-5100/No CMS > Mild CMS = Mod/Sev CMS), while glyceryl trinitrate restored vascular function. Both oxidative stress and nitric oxide metabolites increased with altitude only. Principal component analysis revealed that increasing inflammation with altitude was associated with a progressive decline in both micro- and macrovascular function in healthy highlanders. Interpretation Both micro and macrovascular function are affected by chronic exposure to hypoxia, the latter being further compounded by CMS. Funding The "Fonds de dotation AGIR pour les maladies chroniques", the "Air Liquide Foundation", and the "French National Research Agency".
Collapse
Affiliation(s)
- Yann Savina
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Aurélien P. Pichon
- Laboratory Mobility, Aging & Exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Lucas Lemaire
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Connor A. Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mathilde Ulliel-Roche
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Sarah Skinner
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Elie Nader
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Nicolas Guillot
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Émeric Stauffer
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Matthieu Roustit
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Ivan Hancco
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Paul Robach
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - François Esteve
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Vincent Pialoux
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- University of Milano-Bicocca, Milan, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- University of Milano-Bicocca, Milan, Italy
| | - Philip N. Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | - Stéphane Doutreleau
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Samuel Verges
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Julien V. Brugniaux
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
4
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
5
|
Chacón-Diaz M. Chronic exposure to high altitude and the presence of coronary ectasia in patients with ST elevation myocardial infarction. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2023; 4:151-156. [PMID: 38298409 PMCID: PMC10824749 DOI: 10.47487/apcyccv.v4i4.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024]
Abstract
Objective To evaluate the association between chronic exposure to high altitude and the presence of coronary ectasia (CE) in patients with ST-segment elevation myocardial infarction (STEMI) treated in a highly specialized cardiovascular reference hospital in Peru. Materials and methods Retrospective matched case-control study. The cases were patients with CE and controls without CE. The relationship between CE and chronic exposure to high altitude was evaluated considering intervening variables such as arterial hypertension, diabetes mellitus, dyslipidemia, smoking, and hematocrit values. Patients with chronic inflammatory pathologies, chronic obstructive pulmonary disease, and previous revascularization were excluded. Multivariate logistic regression was applied to obtain the OR value and their respective confidence intervals. Results Eighteen cases and 18 controls were studied, most of them were men with an average age of 65 years. Thirty-six percent of the population came from high altitude; in this group 76.9% had coronary ectasia of the infarct-related artery. The mean hematocrit value was slightly higher in the high-altitude native (46 ± 7% versus 42 ± 5%, p=0.094). Multivariate conditional logistic regression did not find a significant relationship between exposure to high altitude and the risk of presenting CE (OR:6.03, IC95%: 0.30-118, p=0.236). Conclusions In patients with STEMI, we found no association between chronic exposure to high altitude and coronary ectasia.
Collapse
Affiliation(s)
- Manuel Chacón-Diaz
- Instituto Nacional Cardiovascular INCOR, EsSalud, Lima, Perú. Instituto Nacional Cardiovascular INCOR, EsSalud Lima Perú
- Universidad Particular Cayetano Heredia, Lima, Perú. Universidad Peruana Cayetano Heredia Universidad Particular Cayetano Heredia Lima Peru
| |
Collapse
|
6
|
Brewster LM, Bain AR, Garcia VP, DeSouza NM, Tymko MM, Greiner JJ, Ainslie PN. Global REACH 2018: High Altitude-Related Circulating Extracellular Microvesicles Promote a Proinflammatory Endothelial Phenotype In Vitro. High Alt Med Biol 2023; 24:223-229. [PMID: 37504958 DOI: 10.1089/ham.2023.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Brewster, L. Madden, Anthony R. Bain, Vinicius P. Garcia, Noah M. DeSouza, Michael M. Tymko, Jared J. Greiner, and Philip N. Ainslie. Global REACH 2018: high altitude-related circulating extracellular microvesicles promote a proinflammatory endothelial phenotype in vitro. High Alt Med Biol. 24:223-229, 2023. Introduction: Ascent to high altitude (HA) can induce vascular dysfunction by promoting a proinflammatory endothelial phenotype. Circulating microvesicles (MVs) can mediate the vascular endothelium and inflammation. It is unclear whether HA-related MVs are associated with endothelial inflammation. Objectives: We tested the hypothesis that MVs derived from ascent to HA induce a proinflammatory endothelial phenotype. Methods: Ten healthy adults (8 M/2 F; age: 28 ± 2 years) residing at sea level (SL) were studied before and 4-6 days after rapid ascent to HA (4,300 m). MVs were isolated and enumerated from plasma by centrifugation and flow cytometry. Human umbilical vein endothelial cells were treated with MVs collected from each subject at SL (MV-SL) and at HA (MV-HA). Results: Circulating MV number significantly increased at HA (26,637 ± 3,315 vs. 19,388 ± 1,699). Although intracellular expression of total nuclear factor kappa beta (NF-κB; 83.4 ± 6.7 arbitrary units [AU] vs. 90.2 ± 6.9 AU) was not affected, MV-HA resulted in ∼55% higher (p < 0.05) active NF-κB (129.6 ± 19.8 AU vs. 90.7 ± 10.5 AU) expression compared with MV-SL. In addition, MV-HA induced higher interleukin (IL)-6 (63.9 ± 3.9 pg/ml vs. 53.3 ± 3.6 pg/ml) and IL-8 (140.2 ± 3.6 pg/ml vs. 120.7 ± 3.8 pg/ml) release compared with MV-SL, which was blunted with NF-κB blockade. Conclusions: Circulating extracellular MVs increase at HA and induce endothelial inflammation, potentially contributing to altitude-related vascular dysfunction.
Collapse
Affiliation(s)
- L Madden Brewster
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Anthony R Bain
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Vinicius P Garcia
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Noah M DeSouza
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jared J Greiner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
7
|
Peng W, Li H, Xia C, Guo Y, Xu X, Zeng W, Liu K, Che Q, Jiang Y, Xiang K, Zhou X, Li G, Li Z. Cardiovascular indicators associated with ventricular remodeling in chronic high-altitude disease: a cardiovascular MRI study. Eur Radiol 2023; 33:6267-6277. [PMID: 37036481 DOI: 10.1007/s00330-023-09574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE This study aimed to assess biventricular function and mechanics in patients with the chronic high-altitude disease (CHAD) using cardiovascular MRI and explore the possible risk factors associated with ventricular remodeling. METHODS In this prospective study, consecutive CHAD patients and healthy controls at high-altitude (HA) and at sea level (SL) underwent cardiovascular MRI. Right ventricular (RV) and left ventricular (LV) function and global strain parameters were compared. To identify risk factors associated with ventricular remodeling, multiple linear regression analyses were used. RESULTS A total of 33 patients with CHAD (42.97 years ± 11.80; 23 men), 33 HA (41.18 years ± 8.58; 21 men), and 33 SL healthy controls (43.48 years ± 13.40; 21 men) were included. A Significantly decreased biventricular ejection fraction was observed in patients (all p < 0.05). Additionally, the HA group displayed lower magnitudes of biventricular longitudinal peak strain (PS) (RV, - 13.67% ± 4.05 vs. - 16.22% ± 3.03; LV, - 14.68% ± 2.20 vs. - 16.19% ± 2.51; both p < 0.05), but a higher LV circumferential PS (- 20.74% ± 2.02 vs. - 19.17% ± 2.34, p < 0.05) than the SL group. Moreover, multiple linear regression analyses revealed that HGB (β = 0.548) was related to the LV remodeling index, whereas BUN (β = 0.570) was associated with the RV remodeling index. CONCLUSIONS With the deterioration of RV function in patients with CHAD, LV function was also impaired concomitantly. Hypoxia-induced erythrocytosis may contribute to LV impairment, while BUN was considered an independent risk factor for RV remodeling. KEY POINTS • A significantly lower biventricular ejection fraction was observed in patients, with a decreased magnitude of left ventricular (LV) peak systolic strain rate (radial and circumferential) and peak diastolic strain rate (all p < 0.05). • High-altitude healthy natives showed a lower biventricular longitudinal peak strain (all p < 0.05). • Hemoglobin was related to LV remodeling (β = 0.548), while BUN (β = 0.570) was independently associated with RV remodeling in CHAD patients.
Collapse
Affiliation(s)
- Wanlin Peng
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hongwei Li
- Department of Cardiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South ren Min Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Ren Min Road, Chengdu, 610041, Sichuan, China
| | - Xu Xu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wen Zeng
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Keling Liu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qianqiu Che
- Department of Cardiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Yuexin Jiang
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Kejin Xiang
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, 200126, China
| | - Gang Li
- Department of Radiology, The People's Hospital of Ningnan County Sichuan Province, Ningnan, 615400, Sichuan, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Patrician A, Willie C, Hoiland RL, Gasho C, Subedi P, Anholm JD, Tymko MM, Ainslie PN. Manipulation of iron status on cerebral blood flow at high altitude in lowlanders and adapted highlanders. J Cereb Blood Flow Metab 2023; 43:1166-1179. [PMID: 36883428 PMCID: PMC10291452 DOI: 10.1177/0271678x231152734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 12/05/2022] [Indexed: 03/09/2023]
Abstract
Cerebral blood flow (CBF) increases during hypoxia to counteract the reduction in arterial oxygen content. The onset of tissue hypoxemia coincides with the stabilization of hypoxia-inducible factor (HIF) and transcription of downstream HIF-mediated processes. It has yet to be determined, whether HIF down- or upregulation can modulate hypoxic vasodilation of the cerebral vasculature. Therefore, we examined whether: 1) CBF would increase with iron depletion (via chelation) and decrease with repletion (via iron infusion) at high-altitude, and 2) explore whether genotypic advantages of highlanders extend to HIF-mediated regulation of CBF. In a double-blinded and block-randomized design, CBF was assessed in 82 healthy participants (38 lowlanders, 20 Sherpas and 24 Andeans), before and after the infusion of either: iron(III)-hydroxide sucrose, desferrioxamine or saline. Across both lowlanders and highlanders, baseline iron levels contributed to the variability in cerebral hypoxic reactivity at high altitude (R2 = 0.174, P < 0.001). At 5,050 m, CBF in lowlanders and Sherpa were unaltered by desferrioxamine or iron. At 4,300 m, iron infusion led to 4 ± 10% reduction in CBF (main effect of time p = 0.043) in lowlanders and Andeans. Iron status may provide a novel, albeit subtle, influence on CBF that is potentially dependent on the severity and length-of-stay at high altitude.
Collapse
Affiliation(s)
- Alexander Patrician
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Christopher Willie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Gasho
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Prajan Subedi
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - James D Anholm
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Michael M Tymko
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| |
Collapse
|
9
|
Zhang H, Zhang X, Liu Z, Mei Y, Liu Y, Wei X, Xiao C, Gao Y, Ma Z. Time-course effects and mechanisms of hypobaric hypoxia on nervous system in mice. Neurosci Lett 2023; 801:137163. [PMID: 36868397 DOI: 10.1016/j.neulet.2023.137163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of time course on neurological impairment after acute hypobaric hypoxia exposure in mice and clarify the mechanism of acclimatization, so as to provide a suitable mice model and identify potential target against hypobaric hypoxia for further drug research. METHOD Male C57BL/6J mice were exposed to hypobaric hypoxia at a simulated altitude of 7000 m for 1, 3, and 7 days (1HH, 3HH and 7HH respectively). The behavior of the mice was evaluated by novel object recognition (NOR) and morris water maze test (MWM), then, the pathological changes of mice brain tissues were observed by H&E and Nissl staining. In addition, RNA sequencing (RNA-Seq) was performed to characterize the transcriptome signatures, and enzyme-linked immunosorbent assay (ELISA), Real-time polymerase chain reaction (RT-PCR), and western blot (WB) were used to verify the mechanisms of neurological impairment induced by hypobaric hypoxia. RESULT The hypobaric hypoxia condition resulted in impaired learning and memory, decreased new object cognitive index, and increased escape latency to the hidden platform in mice, with significant changes seen in the 1HH and 3HH groups. Bioinformatic analysis of RNA-seq results of hippocampal tissue showed that 739 differentially expressed genes (DEGs) appeared in the 1HH group, 452 in the 3HH group, and 183 in the 7HH group compared to the control group. There were 60 key genes overlapping in three groups which represented persistent changes and closely related biological functions and regulatory mechanisms in hypobaric hypoxia-induced brain injuries. DEGs enrichment analysis showed that hypobaric hypoxia-induced brain injuries were associated with oxidative stress, inflammatory responses, and synaptic plasticity. ELISA and WB results confirmed that these responses occurred in all hypobaric hypoxic groups while attenuated in the 7HH group. VEGF-A-Notch signaling pathway was enriched by DEGs in hypobaric hypoxia groups and was validated by RT-PCR and WB. CONCLUSION The nervous system of mice exposed to hypobaric hypoxia exhibited stress followed by gradual habituation and thus acclimatization over time, which was reflected in the biological mechanism involving inflammation, oxidative stress, and synaptic plasticity, and accompanied by activation of the VEGF-A-Notch pathway.
Collapse
Affiliation(s)
- Huiting Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Xianxie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Zuoxu Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yu Mei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yufu Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Xue Wei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Zengchun Ma
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
10
|
Vizcardo-Galindo GA, Howe CA, Hoiland RL, Carter HH, Willie CK, Ainslie PN, Tremblay JC. Impact of Oxygen Supplementation on Brachial Artery Hemodynamics and Vascular Function During Ascent to 5,050 m. High Alt Med Biol 2023; 24:27-36. [PMID: 36940101 DOI: 10.1089/ham.2022.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Vizcardo-Galindo, Gustavo A., Connor A. Howe, Ryan L. Hoiland, Howard H. Carter, Christopher K. Willie, Philip N. Ainslie, and Joshua C. Tremblay. Impact of oxygen supplementation on brachial artery hemodynamics and vascular function during ascent to 5,050 m. High Alt Med Biol. 24:27-36, 2023.-High-altitude trekking alters upper limb hemodynamics and reduces brachial artery vascular function in lowlanders. Whether these changes are reversible with the removal of hypoxia is unknown. We investigated the impact of 20 minutes of oxygen supplementation (O2) on brachial artery hemodynamics, reactive hyperemia (RH; microvascular function), and flow-mediated dilation (FMD; endothelial function). Participants (aged 21-42 years) were examined before and with O2 at 3,440 m (n = 7), 4,371 m (n = 7), and 5,050 m (n = 12) using Duplex ultrasound (days 4, 7, and 10 respectively). At 3,440 m, O2 decreased brachial artery diameter (-5% ± 5%; p = 0.04), baseline blood flow (-44% ± 15%; p < 0.001), oxygen delivery (-39 ± 16; p < 0.001), and peak RH (-8% ± 8%; p = 0.02), but not RH normalized for baseline blood flow. Elevated FMD (p = 0.04) with O2 at 3,440 m was attributed to the reduction in baseline diameter. At 5,050 m, a reduction in brachial artery blood flow (-17% ± 22%; p = 0.03), but not oxygen delivery, diameter, RH, or FMD occurred with O2. These findings suggest that during early trekking at high altitude, O2 causes vasoconstriction in the upper limb along the arterial tree (conduit and resistance arteries). With incremental high-altitude exposure, O2 reduces blood flow without compromising oxygen delivery, RH, or FMD, suggesting a differential impact on vascular function modulated by the duration and severity of high-altitude exposure.
Collapse
Affiliation(s)
- Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Connor A Howe
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries, Vancouver, Canada
| | - Howard H Carter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Christopher K Willie
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| |
Collapse
|
11
|
Liu MY, Ju YN, Jia BW, Sun XK, Qiu L, Liu HY, Xu GX, Tai QH, Tan J, Gao W. Inhibition of DNA methylation attenuates lung ischemia-reperfusion injury after lung transplantation. J Int Med Res 2023; 51:3000605231153587. [PMID: 36756846 PMCID: PMC9912569 DOI: 10.1177/03000605231153587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE DNA methylation plays an important role in inflammation and oxidative stress. This study aimed to investigate the effect of inhibiting DNA methylation on lung ischemia-reperfusion injury (LIRI). METHODS We adopted a completely random design for our study. Thirty-two rats were randomized into the sham, LIRI, azathioprine (AZA), and pluripotin (SC1) groups. The rats in the LIRI, AZA, and SC1 groups received left lung transplantation and intravenous injection of saline, AZA, and SC1, respectively. After 24 hours of reperfusion, histological injury, the arterial oxygen partial pressure to fractional inspired oxygen ratio, the wet/dry weight ratio, protein and cytokine concentrations in lung tissue, and DNA methylation in lung tissue were evaluated. The pulmonary endothelium that underwent hypoxemia and reoxygenation was treated with AZA or SC1. Endothelial apoptosis, chemokines, reactive oxygen species, nuclear factor-κB, and apoptotic proteins in the endothelium were studied. RESULTS Inhibition of DNA methylation by AZA attenuated lung injury, inflammation, and the oxidative stress response, but SC1 aggravated LIRI injury. AZA significantly improved endothelial function, suppressed apoptosis and necrosis, reduced chemokines, and inhibited nuclear factor-κB. CONCLUSIONS Inhibition of DNA methylation ameliorates LIRI and apoptosis and improves pulmonary function via the regulation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Ming-yuan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying-nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital
of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bao-wei Jia
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Xi-kun Sun
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Heng-yu Liu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Guang-xiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Qi-hang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Tan
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China,Wei Gao, Department of Anesthesiology, The
Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin,
Heilongjiang 150081, China.
| |
Collapse
|
12
|
Ortiz-Prado E, Villafuerte FC, Brugniaux JV, Izquierdo-Condoy J, Viscor G. Editorial: Stroke and infarction at high-altitude. Front Physiol 2022; 13:1114747. [PMID: 36569767 PMCID: PMC9782429 DOI: 10.3389/fphys.2022.1114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador,*Correspondence: Esteban Ortiz-Prado,
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada-LID/Fisiología del Transporte de Oxígeno-IIA, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Juan Izquierdo-Condoy
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Ginés Viscor
- Dirección Nacional de Inteligencia de la Salud, Ministerio de Salud Púbica, Quito, Ecuador
| |
Collapse
|
13
|
Villafuerte FC, Simonson TS, Bermudez D, León-Velarde F. High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology (Bethesda) 2022; 37:0. [PMID: 35001654 PMCID: PMC9191173 DOI: 10.1152/physiol.00029.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/13/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Erythrocytosis, or increased production of red blood cells, is one of the most well-documented physiological traits that varies within and among in high-altitude populations. Although a modest increase in blood O2-carrying capacity may be beneficial for life in highland environments, erythrocytosis can also become excessive and lead to maladaptive syndromes such as chronic mountain sickness (CMS).
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tatum S Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Fabiola León-Velarde
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
14
|
Bao H, He X, Li X, Cao Y, Zhang N. Magnetic resonance imaging study of normal cranial bone marrow conversion at high altitude. Quant Imaging Med Surg 2022; 12:3126-3137. [PMID: 35655838 PMCID: PMC9131338 DOI: 10.21037/qims-21-740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/11/2022] [Indexed: 08/29/2023]
Abstract
BACKGROUND To use conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) to investigate the effects of long-term hypoxia on cranial bone marrow conversion in healthy people at high altitudes. METHODS A total of 1,130 individuals were selected from altitudinal areas of 2,000-3,000, 3,100-4,000, and >4,100 m. Each altitude range was divided into 5 age groups: 0-5, 6-14, 15-29, 30-49, and ≥50 years. Firstly, cranial bone marrow typing of the participants in each altitude range was performed on sagittal T1-weighted images (T1WI) according to the average diploe thickness and signal intensity of the normal skull, and the relationship between bone marrow conversion and age was analyzed. Secondly, the apparent diffusion coefficient (ADC) values of the frontal bone, parietal bone, occipital bone, and temporal bone were measured in the DWI post-processing workstation and statistical methods were used to analyze whether different altitudinal gradients and long-term hypoxic environment had any effect on cranial bone marrow conversion. RESULTS There was a positive correlation between bone marrow type and age in the healthy populations at all 3 levels of altitude (P<0.05). The average thickness of the cranial diploe also positively correlated with age (P<0.05); in the age ranges of 30-49 and ≥50 years, the ADC values of the occipital and temporal bone marrow positively correlated with increasing altitude (P<0.05). CONCLUSIONS The cranial bone marrow of normal people at high altitudes changes from Type I to Type IV with increasing age and under the influence of long-term chronic hypoxia. The bone marrow of the occipital and temporal bones of healthy people aged 30-49 and ≥50 years showed erythromedularization during the process of Type III and IV bone marrow conversion.
Collapse
Affiliation(s)
| | | | - Xiaoguang Li
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | | | | |
Collapse
|
15
|
Chen P, Liu Y, Liu W, Wang Y, Liu Z, Rong M. Impact of High-Altitude Hypoxia on Bone Defect Repair: A Review of Molecular Mechanisms and Therapeutic Implications. Front Med (Lausanne) 2022; 9:842800. [PMID: 35620712 PMCID: PMC9127390 DOI: 10.3389/fmed.2022.842800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Reaching areas at altitudes over 2,500–3,000 m above sea level has become increasingly common due to commerce, military deployment, tourism, and entertainment. The high-altitude environment exerts systemic effects on humans that represent a series of compensatory reactions and affects the activity of bone cells. Cellular structures closely related to oxygen-sensing produce corresponding functional changes, resulting in decreased tissue vascularization, declined repair ability of bone defects, and longer healing time. This review focuses on the impact of high-altitude hypoxia on bone defect repair and discusses the possible mechanisms related to ion channels, reactive oxygen species production, mitochondrial function, autophagy, and epigenetics. Based on the key pathogenic mechanisms, potential therapeutic strategies have also been suggested. This review contributes novel insights into the mechanisms of abnormal bone defect repair in hypoxic environments, along with therapeutic applications. We aim to provide a foundation for future targeted, personalized, and precise bone regeneration therapies according to the adaptation of patients to high altitudes.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Márquez MF. The heart at high altitude. Trends Cardiovasc Med 2022:S1050-1738(22)00039-1. [PMID: 35217177 DOI: 10.1016/j.tcm.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Manlio F Márquez
- Division of Clinical Investigation, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico.
| |
Collapse
|
17
|
Mrakic-Sposta S, Biagini D, Bondi D, Pietrangelo T, Vezzoli A, Lomonaco T, Di Francesco F, Verratti V. OxInflammation at High Altitudes: A Proof of Concept from the Himalayas. Antioxidants (Basel) 2022; 11:antiox11020368. [PMID: 35204250 PMCID: PMC8869289 DOI: 10.3390/antiox11020368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
High-altitude locations are fascinating for investigating biological and physiological responses in humans. In this work, we studied the high-altitude response in the plasma and urine of six healthy adult trekkers, who participated in a trek in Nepal that covered 300 km in 19 days along a route in the Kanchenjunga Mountain and up to a maximum altitude of 5140 m. Post-trek results showed an unbalance in redox status, with an upregulation of ROS (+19%), NOx (+28%), neopterin (+50%), and pro-inflammatory prostanoids, such as PGE2 (+120%) and 15-deoxy-delta12,14-PGJ2 (+233%). The isoprostane 15-F2t-IsoP was associated with low levels of TAC (−18%), amino-thiols, omega-3 PUFAs, and anti-inflammatory CYP450 EPA-derived mediators, such as DiHETEs. The deterioration of antioxidant systems paves the way to the overload of redox and inflammative markers, as triggered by the combined physical and hypoxic stressors. Our data underline the link between oxidative stress and inflammation, which is related to the concept of OxInflammation into the altitude hypoxia fashion.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (S.M.-S.); (A.V.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
- Correspondence:
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (D.B.); (T.P.)
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (D.B.); (T.P.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (S.M.-S.); (A.V.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy;
| |
Collapse
|
18
|
Webb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC. Influence of High Hemoglobin-Oxygen Affinity on Humans During Hypoxia. Front Physiol 2022; 12:763933. [PMID: 35095551 PMCID: PMC8795792 DOI: 10.3389/fphys.2021.763933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen A. Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Chad C. Wiggins,
| |
Collapse
|
19
|
Giersch GEW, Charkoudian N, McClung HL. The Rise of the Female Warfighter: Physiology, Performance, and Future Directions. Med Sci Sports Exerc 2021; 54:683-691. [PMID: 34939610 DOI: 10.1249/mss.0000000000002840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Since 1948, the United States military has been open to both men and women as permanent party service members. However, in the majority of the time since, there have been a subset of military occupational specialties (MOS), or job descriptions, open only to men. In particular, jobs requiring more intense physical and/or environmental strain were considered to be beyond the physiological capabilities of women. In the present analysis, we review the literature regarding neuromuscular, physical performance, and environmental physiology in women, to highlight that women have no inherent limitation in their capacity to participate in relevant roles and jobs within the military, within accepted guidelines to promote risk mitigation across sexes. First, we discuss performance and injury risk: both neuromuscular function and physical capabilities. Second, physiological responses to environmental stress. Third, we discuss risk as it relates to reproductive health and nutritional considerations. We conclude with a summary of current physiological, performance and injury risk data in men and women that support our overarching purpose, as well as suggestions for future directions.
Collapse
Affiliation(s)
- Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, MA Biophysical and Biomedical Modeling Division, United States Army Research Institute of Environmental Medicine, Natick, MA Oak Ridge Institute for Science and Technology, Oak Ridge, TN
| | | | | |
Collapse
|
20
|
Hudson J, Farkas L. Epigenetic Regulation of Endothelial Dysfunction and Inflammation in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms222212098. [PMID: 34829978 PMCID: PMC8617605 DOI: 10.3390/ijms222212098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
Once perceived as a disorder treated by vasodilation, pulmonary artery hypertension (PAH) has emerged as a pulmonary vascular disease with severe endothelial cell dysfunction. In the absence of a cure, many studies seek to understand the detailed mechanisms of EC regulation to potentially create more therapeutic options for PAH. Endothelial dysfunction is characterized by complex phenotypic changes including unchecked proliferation, apoptosis-resistance, enhanced inflammatory signaling and metabolic reprogramming. Recent studies have highlighted the role of epigenetic modifications leading to pro-inflammatory response pathways, endothelial dysfunction, and the progression of PAH. This review summarizes the existing literature on epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs, which can lead to aberrant endothelial function. Our goal is to develop a conceptual framework for immune dysregulation and epigenetic changes in endothelial cells in the context of PAH. These studies as well as others may lead to advances in therapeutics to treat this devastating disease.
Collapse
|
21
|
Stone RM, Ainslie PN, Tremblay JC, Akins JD, MacLeod DB, Tymko MM, DeSouza CA, Bain AR. GLOBAL REACH 2018: intra-arterial vitamin C improves endothelial-dependent vasodilatory function in humans at high altitude. J Physiol 2021; 600:1373-1383. [PMID: 34743333 DOI: 10.1113/jp282281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
High altitude-induced hypoxaemia is often associated with peripheral vascular dysfunction. However, the basic mechanism(s) underlying high-altitude vascular impairments remains unclear. This study tested the hypothesis that oxidative stress contributes to the impairments in endothelial function during early acclimatization to high altitude. Ten young healthy lowlanders were tested at sea level (344 m) and following 4-6 days at high altitude (4300 m). Vascular endothelial function was determined using the isolated perfused forearm technique with forearm blood flow (FBF) measured by strain-gauge venous occlusion plethysmography. FBF was quantified in response to acetylcholine (ACh), sodium nitroprusside (SNP) and a co-infusion of ACh with the antioxidant vitamin C (ACh+VitC). The total FBF response to ACh (area under the curve) was ∼30% lower at high altitude than at sea level (P = 0.048). There was no difference in the response to SNP at high altitude (P = 0.860). At sea level, the co-infusion of ACh+VitC had no influence on the FBF dose response (P = 0.268); however, at high altitude ACh+VitC resulted in an average increase in the FBF dose response by ∼20% (P = 0.019). At high altitude, the decreased FBF response to ACh, and the increase in FBF in response to ACh+VitC, were associated with the magnitude of arterial hypoxaemia (R2 = 0.60, P = 0.008 and R2 = 0.63, P = 0.006, respectively). Collectively, these data support the hypothesis that impairments in vascular endothelial function at high altitude are in part attributable to oxidative stress, a consequence of the magnitude of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related vascular dysfunction. KEY POINTS: Vascular dysfunction has been demonstrated in lowlanders at high altitude (>4000 m). However, the extent of impairment and the delineation of contributing mechanisms have remained unclear. Using the gold-standard isolated perfused forearm model, we determined the extent of vasodilatory dysfunction and oxidative stress as a contributing mechanism in healthy lowlanders before and 4-6 days after rapid ascent to 4300 m. The total forearm blood flow response to acetylcholine at high altitude was decreased by ∼30%. Co-infusion of acetylcholine with the antioxidant vitamin C partially restored the total forearm blood flow by ∼20%. The magnitude of forearm blood flow reduction, as well as the impact of oxidative stress, was positively associated with the individual severity of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related changes in endothelial-mediated vasodilatory function.
Collapse
Affiliation(s)
- Rachel M Stone
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| | - Philip N Ainslie
- Kelowna, Centre for Heart Lung and Vascular Health, University of British Columbia, Vancouver, Canada
| | - Joshua C Tremblay
- Kelowna, Centre for Heart Lung and Vascular Health, University of British Columbia, Vancouver, Canada
| | | | - David B MacLeod
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Anthony R Bain
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| |
Collapse
|
22
|
Zhang Z, Liao H, Zhang X, Meng Q, Shi R, Feng J, Li X, Gou Q, Ye R, Hu X, Chen X. Associations of urinary sodium excretion with central hemodynamics and changes in vascular structure and function at high altitude. J Clin Hypertens (Greenwich) 2021; 23:1907-1914. [PMID: 34477293 PMCID: PMC8678796 DOI: 10.1111/jch.14356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Research reports on associations of urinary sodium excretion with central hemodynamic parameters and vascular changes are quite limited in general or non‐hypertensive population. The purpose of the current study was to explore such associations in Chinese general Tibetans living at high altitude. This cross‐sectional study was conducted in Luhuo County, Ganzi Tibetan Autonomous Prefecture with average elevation of 3800 meters from December 2018 to January 2019. A total of 294 Tibetans were included in the current study. Twenty‐four hour urinary sodium excretion was estimated by second fasting spot urine in the morning using Kawasaki formula. Central hemodynamic parameters, including central systolic blood pressure (CSBP), central diastolic blood pressure (CDBP), central pulse pressure (CPP), central mean arterial pressure (CMAP), augmentation pressure (AP), and augmentation index standardized for heart rate of 75 (AIx75), were evaluated using the SphygmoCor system. Vascular structures and functions were assessed by carotid intima media thickness (CIMT) test and brachial ankle pulse wave velocity (baPWV), respectively. Estimated mean 24h urinary sodium excretion of Tibetans in Luhuo County was 5.26±1.61 g. After adjustment, estimated 24h urinary sodium was positively associated with CSBP (β = 1.15, p = .008) and CPP (β = 0.87, p = .013). Line graph of means across urinary sodium quartiles showed that associations of 24 h urinary sodium excretion with AIx75 and baPWV presented approximate “J” shape after controlling for confounders. Estimated 24 h sodium excretion was independently and positively associated with CSBP and CPP. Moreover, association between urinary sodium excretion and arterial elasticity, as evaluated by baPWV and AIx75, presented “J” shape. Further studies are needed to verify J‐shaped association and “safe” zone of sodium intake.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Liao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayue Feng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinran Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiling Gou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianjin Hu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Jones DT, Macdonald JH, Sandoo A, Oliver SJ, Rossetti GMK. The deleterious effects of acute hypoxia on microvascular and large vessel endothelial function. Exp Physiol 2021; 106:1699-1709. [PMID: 34036677 DOI: 10.1113/ep089393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was primarily to determine the effect of hypoxia on microvascular function and secondarily whether superior cardiorespiratory fitness is protective against hypoxia-induced impairment in vascular function. What is the main finding and its importance? Hypoxia reduced endothelium-dependent but not endothelium-independent microvascular function. The extent of impairment was twofold higher in the microcirculation compared with the large blood vessels. This study suggests that individuals with superior cardiorespiratory fitness might preserve microvascular function in hypoxia. These findings highlight the sensitivity of the microvascular circulation to hypoxia. ABSTRACT Hypoxia is associated with diminished bioavailability of the endothelium-derived vasodilator, nitric oxide (NO). Diminished NO bioavailability can have deleterious effects on endothelial function. The endothelium is a heterogeneous tissue; therefore, a comprehensive assessment of endothelial function is crucial to understand the significance of hypoxia-induced endothelial dysfunction. We hypothesized that acute hypoxia would have a deleterious effect on microvascular and large vessel endothelial function. Twenty-nine healthy adults [24 (SD = 4 ) years of age] completed normoxic and hypoxic [inspired O2 fraction = 0.209] trials in this double-blinded, counterbalanced crossover study. After 30 min, we assessed the laser Doppler imaging-determined perfusion response to iontophoresis of ACh as a measure of endothelium-dependent microvascular function and iontophoresis of sodium nitroprusside as a measure of endothelium-independent microvascular function. After 60 min, we assessed brachial flow-mediated dilatation as a measure of large vessel endothelial function. Thirty minutes of hypoxia reduced endothelium-dependent microvascular function determined by the perfusion response to ACh (median difference (x̃∆) = -109% {interquartile range: 542.7}, P < 0.05), but not endothelium-independent microvascular function determined by the perfusion response to sodium nitroprusside (x̃∆ = 69% {interquartile range: 453.7}, P = 0.6). In addition, 60 min of hypoxia reduced allometrically scaled flow-mediated dilatation compared with normoxia ( x ¯ Δ = - 1.19 [95% CI = -1.80, -0.58 (Confidence Intervals)]%, P < 0.001). The decrease in microvascular endothelial function was associated with cardiorespiratory fitness (r = 0.45, P = 0.02). In conclusion, acute exposure to normobaric hypoxia significantly reduced endothelium-dependent vasodilatory capacity in small and large vessels. Collectively, these findings highlight the sensitivity of the microvascular circulation to hypoxic insult, particularly in those with poor cardiorespiratory fitness.
Collapse
Affiliation(s)
- Danial T Jones
- School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Jamie H Macdonald
- School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Aamer Sandoo
- School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Samuel J Oliver
- School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Gabriella M K Rossetti
- School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK.,Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| |
Collapse
|
24
|
A 1H NMR spectroscopic metabolomic study of the protective effects of irbesartan in a rat model of chronic mountain sickness. J Pharm Biomed Anal 2021; 204:114235. [PMID: 34252817 DOI: 10.1016/j.jpba.2021.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Chronic mountain sickness (CMS) is a significant pathology in most high-altitude regions globally, affecting the cardiopulmonary system and its mechanism is largely unknown. A metabonomic approach using 1H nuclear magnetic resonance spectroscopy allows for detecting differential metabolites, which provides a global view and mechanisms during CMS development. In this study, we simulated a high-altitude environment to establish a rat model of CMS. Irbesartan was administered to CMS rats at three doses (6.75, 13.5, and 27 mg/kg) once a day for 15 days. HE staining and transmission electron microscopy were used to evaluate the effect of changes on the lung. Based on 1H NMR spectra obtained from serum samples, partial least squares-discriminant analysis (PLS-DA) and its variant orthogonal PLS-DA (OPLS-DA) models were applied to distinguish the different groups. Histopathological sections showed that the alveolar structure was abnormal, inflammatory infiltration occurred in CMS rats, and CMS induced notable metabolic disorder according to the 1H NMR result. However, irbesartan reversed the imbalanced metabolites via energy metabolism, amino acid metabolism, and taurine metabolism pathways, and its effect was also confirmed by the general signs and morphology of the lung. The results revealed that irbesartan as an effective therapeutic agent to improve CMS is warranted.
Collapse
|
25
|
Nijiati Y, Yang T, Aimaiti M, Maimaitiyiming D, Aikemu A. Irbesartan ameliorates chronic mountain sickness in a rat model via the cholesterol metabolism: An iTRAQ -based proteomics analysis. Biomed Pharmacother 2021; 141:111802. [PMID: 34147903 DOI: 10.1016/j.biopha.2021.111802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To study the effects of irbesartan on pulmonary artery lesions in a rat model with chronic mountain sickness (CMS) and identify the biomarkers involved. METHODS In this study, we used a rat model of CMS to evaluate the therapeutic effect of irbesartan by measuring pulmonary artery pressure and evaluating the histopathology of the pulmonary artery. We also used proteomics technology to identify differentially expressed proteins (DEPs) in the serum and performed bioinformatics analysis. Results were then verified by enzyme linked immunosorbent assay (ELISA) and immunohistochemistry (IHC). RESULTS Irbesartan treatment induced a significant decrease (P < 0.05) in the pulmonary artery pressure of CMS rats. Histopathological and electron microscope further confirmed that high altitude hypoxia induced changes in the structure of the pulmonary artery tissue and caused ultrastructural lesions. Proteomics analysis identified 40 DEPs; bioinformatics analysis further revealed that the cholesterol metabolism pathway plays a crucial role in the occurrence of CMS. ELISA and IHC verified that several DEPs (Apo-A1, Apo-C1, Apo-E, IGF-1, Profilin1, and Col1a1) represent critical biological markers in pulmonary artery disease caused by CMS. CONCLUSIONS Irbesartan significantly improved pulmonary artery damage in a rat model of CMS possibly by impacting on the cholesterol metabolism pathway and by reducing damage to vascular endothelial cells. Irbesartan also inhibited the expression levels of IGF-1, Profilin1 and Col1a1 to relieve pulmonary artery pressure and improve lung function by inhibiting vascular remodeling. Several proteins were identified as potential biomarkers of CMS, including Apo-A1, Apo-C1, Apo-E, IGF-1, Profilin1, and Col1a1.
Collapse
Affiliation(s)
- Yiliyaer Nijiati
- Department of Drug Analysis, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, Xinjiang, China; Central Laboratory of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Tao Yang
- Central Laboratory of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mutalifu Aimaiti
- Central Laboratory of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Dilinuer Maimaitiyiming
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Ainiwaer Aikemu
- Department of Drug Analysis, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, Xinjiang, China; Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
26
|
Tremblay JC, Ainslie PN, Turner R, Gatterer H, Schlittler M, Woyke S, Regli IB, Strapazzon G, Rauch S, Siebenmann C. Endothelial function and shear stress in hypobaric hypoxia: time course and impact of plasma volume expansion in men. Am J Physiol Heart Circ Physiol 2020; 319:H980-H994. [PMID: 32886005 DOI: 10.1152/ajpheart.00597.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-altitude exposure typically reduces endothelial function, and this is modulated by hemoconcentration resulting from plasma volume contraction. However, the specific impact of hypobaric hypoxia independent of external factors (e.g., cold, varying altitudes, exercise, diet, and dehydration) on endothelial function is unknown. We examined the temporal changes in blood viscosity, shear stress, and endothelial function and the impact of plasma volume expansion (PVX) during exposure to hypobaric hypoxia while controlling for external factors. Eleven healthy men (25 ± 4 yr, mean ± SD) completed two 4-day chamber visits [normoxia (NX) and hypobaric hypoxia (HH; equivalent altitude, 3,500 m)] in a crossover design. Endothelial function was assessed via flow-mediated dilation in response to transient (reactive hyperemia; RH-FMD) and sustained (progressive handgrip exercise; SS-FMD) increases in shear stress before entering and after 1, 6, 12, 48, and 96 h in the chamber. During HH, endothelial function was also measured on the last day after PVX to preexposure levels (1,140 ± 320 mL balanced crystalloid solution). Blood viscosity and arterial shear stress increased on the first day during HH compared with NX and remained elevated at 48 and 96 h (P < 0.005). RH-FMD did not differ during HH compared with NX and was unaffected by PVX despite reductions in blood viscosity (P < 0.05). The stimulus-response slope of increases in shear stress to vasodilation during SS-FMD was preserved in HH and increased by 44 ± 73% following PVX (P = 0.023). These findings suggest that endothelial function is maintained in HH when other stressors are absent and that PVX improves endothelial function in a shear-stress stimulus-specific manner.NEW & NOTEWORTHY Using a normoxic crossover study design, we examined the impact of hypobaric hypoxia (4 days; altitude equivalent, 3,500 m) and hemoconcentration on blood viscosity, shear stress, and endothelial function. Blood viscosity increased during the hypoxic exposure and was accompanied by elevated resting and exercising arterial shear stress. Flow-mediated dilation stimulated by reactive hyperemia and handgrip exercise was preserved throughout the hypoxic exposure. Plasma volume expansion reversed the hypoxia-associated hemoconcentration and selectively increased handgrip exercise flow-mediated dilation.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, Canada
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Maja Schlittler
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Simon Woyke
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivo B Regli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Rauch
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | | |
Collapse
|
27
|
Siques P, Brito J, Ordenes S, Pena E. Involvement of overweight and lipid metabolism in the development of pulmonary hypertension under conditions of chronic intermittent hypoxia. Pulm Circ 2020; 10:42-49. [PMID: 33110496 PMCID: PMC7557786 DOI: 10.1177/2045894020930626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
There is growing evidence that exposure to hypoxia, regardless of the source,
elicits several metabolic responses in individuals. These responses are
constitutive and are usually observed under hypoxia but vary according to the
type of exposure. The aim of this review was to describe the involvement of
obesity and lipid metabolism in the development of high-altitude pulmonary
hypertension and in the development of acute mountain sickness under chronic
intermittent hypoxia. Overweight or obesity, which are common in individuals
with long-term chronic intermittent hypoxia exposure (high-altitude miners,
shift workers, and soldiers), are thought to play a major role in the
development of acute mountain sickness and high-altitude pulmonary hypertension.
This association may be rooted in the interactions between obesity-related
metabolic and physical alterations, such as increased waist circumference and
neck circumference, among others, which lead to critical ventilation
impairments; these impairments aggravate hypoxemia at high altitude, thereby
triggering high-altitude diseases. Overweight and obesity are strongly
associated with higher mean pulmonary artery pressure in the context of
long-term chronic intermittent hypoxia. Remarkably, de novo synthesis of
triglycerides by the sterol regulatory element-binding protein-1c pathway has
been demonstrated, mainly due to the upregulation of stearoyl-CoA desaturase-1,
which is also associated with the same outcomes. Therefore, overweight, obesity,
and other metabolic conditions may hinder proper acclimatization. The involved
mechanisms include respiratory impairment, alteration of the nitric oxide
pathways, inflammatory status, reactive oxygen species imbalance, and other
metabolic changes; however, further studies are required.
Collapse
Affiliation(s)
- Patricia Siques
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Iquique (Chile)
| | - Julio Brito
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Iquique (Chile)
| | - Stefany Ordenes
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Iquique (Chile)
| | - Eduardo Pena
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Iquique (Chile)
| |
Collapse
|
28
|
Berthelsen LF, Fraser GM, Simpson LL, Vanden Berg ER, Busch SA, Steele AR, Meah VL, Lawley JS, Figueroa-Mujíca RJ, Vizcardo-Galindo G, Villafuerte F, Gasho C, Willie CK, Tymko MM, Ainslie PN, Stembridge M, Moore JP, Steinback CD. Highs and lows of sympathetic neurocardiovascular transduction: influence of altitude acclimatization and adaptation. Am J Physiol Heart Circ Physiol 2020; 319:H1240-H1252. [PMID: 32986967 DOI: 10.1152/ajpheart.00364.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-altitude (>2,500 m) exposure results in increased muscle sympathetic nervous activity (MSNA) in acclimatizing lowlanders. However, little is known about how altitude affects MSNA in indigenous high-altitude populations. Additionally, the relationship between MSNA and blood pressure regulation (i.e., neurovascular transduction) at high-altitude is unclear. We sought to determine 1) how high-altitude effects neurocardiovascular transduction and 2) whether differences exist in neurocardiovascular transduction between low- and high-altitude populations. Measurements of MSNA (microneurography), mean arterial blood pressure (MAP; finger photoplethysmography), and heart rate (electrocardiogram) were collected in 1) lowlanders (n = 14) at low (344 m) and high altitude (5,050 m), 2) Sherpa highlanders (n = 8; 5,050 m), and 3) Andean (with and without excessive erythrocytosis) highlanders (n = 15; 4,300 m). Cardiovascular responses to MSNA burst sequences (i.e., singlet, couplet, triplet, and quadruplet) were quantified using custom software (coded in MATLAB, v.2015b). Slopes were generated for each individual based on peak responses and normalized total MSNA. High altitude reduced neurocardiovascular transduction in lowlanders (MAP slope: high altitude, 0.0075 ± 0.0060 vs. low altitude, 0.0134 ± 0.080; P = 0.03). Transduction was elevated in Sherpa (MAP slope, 0.012 ± 0.007) compared with Andeans (0.003 ± 0.002, P = 0.001). MAP transduction was not statistically different between acclimatizing lowlanders and Sherpa (MAP slope, P = 0.08) or Andeans (MAP slope, P = 0.07). When resting MSNA is accounted for (ANCOVA), transduction was inversely related to basal MSNA (bursts/minute) independent of population (RRI, r = 0.578 P < 0.001; MAP, r = -0.627, P < 0.0001). Our results demonstrate that transduction is blunted in individuals with higher basal MSNA, suggesting that blunted neurocardiovascular transduction is a physiological adaptation to elevated MSNA rather than an effect or adaptation specific to chronic hypoxic exposure.NEW & NOTEWORTHY This study has identified that sympathetically mediated blood pressure regulation is reduced following ascent to high-altitude. Additionally, we show that high altitude Andean natives have reduced blood pressure responsiveness to sympathetic nervous activity (SNA) compared with Nepalese Sherpa. However, basal sympathetic activity is inversely related to the magnitude of SNA-mediated fluctuations in blood pressure regardless of population or condition. These data set a foundation to explore more precise mechanisms of blood pressure control under conditions of persistent sympathetic activation and hypoxia.
Collapse
Affiliation(s)
- Lindsey F Berthelsen
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lydia L Simpson
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Emily R Vanden Berg
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Andrew R Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Romulo J Figueroa-Mujíca
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Villafuerte
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Chris Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - Christopher K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada.,Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff School of Sport and Health, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| |
Collapse
|
29
|
Tymko MM, Hoiland RL, Vermeulen TD, Howe CA, Tymko C, Stone RM, Steinback CD, Steele AR, Villafuerte F, Vizcardo-Galindo G, Mujica RJF, Ainslie PN. Global REACH 2018: The carotid artery diameter response to the cold pressor test is governed by arterial blood pressure during normoxic but not hypoxic conditions in healthy lowlanders and Andean highlanders. Exp Physiol 2020; 105:1742-1757. [PMID: 32829509 DOI: 10.1113/ep088898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the impact of oxygen on the circulatory responses to an isocapnic cold pressor test (CPT) in lowlanders and Andean highlanders? What is the main finding and its importance? Overall, the circulatory responses to an isocapnic CPT were largely unaltered with acute normobaric hypoxia and chronic hypobaric hypoxia exposure in lowlanders. However, the relationship between mean arterial pressure and common carotid artery diameter was dampened in hypoxic conditions. Furthermore, there were no differences in the circulatory responses to the CPT between lowlanders and Andean highlanders with lifelong exposure to high altitude. ABSTRACT The impact of oxygen on the circulatory responses to a cold pressor test (CPT) in lowlanders and Andean highlanders remains unknown. Our hypotheses were as follows: (i) in lowlanders, acute normobaric and hypobaric hypoxia would attenuate the common carotid artery (CCA) diameter response to the CPT compared with normobaric normoxia; (ii) Andean highlanders would exhibit a greater CCA diameter response compared with lowlanders; and (iii) a positive relationship between CCA diameter and blood pressure in response to the CPT would be present in both lowlanders and highlanders. Healthy lowlanders (n = 13) and Andean highlanders (n = 8) were recruited and conducted an isocapnic CPT, which consisted of a 3 min foot immersion into water at 0-1°C. Blood pressure (finger photoplethysmography) and CCA diameter and blood flow (Duplex ultrasound) were recorded continuously. The CPT was conducted in lowlanders at sea level in isocapnic normoxic and hypoxic conditions and after 10 days of acclimatization to 4300 m (Cerro de Pasco, Peru) in hypoxic and hyperoxic conditions. Andean highlanders were tested at rest at high altitude. The main findings were as follows: (i) in lowlanders, normobaric but not hypobaric hypoxia elevated CCA reactivity to the CPT; (ii) no differences in response to the CPT were observed between lowlanders and highlanders; and (iii) although hypobaric hypoxaemia reduced the relationship between CCA diameter and blood pressure compared with normobaric normoxia (P = 0.132), hypobaric hyperoxia improved this relationship (P = 0.012), and no relationship was observed in Andean highlanders (P = 0.261). These data demonstrate that the circulatory responses to a CPT were modified by oxygen in lowlanders, but were unaltered with lifelong hypoxic exposure.
Collapse
Affiliation(s)
- Michael M Tymko
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Courtney Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Rachel M Stone
- Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Craig D Steinback
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Steele
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Romulo Joseph Figueroa Mujica
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
30
|
Pathological Roles of Mitochondrial Oxidative Stress and Mitochondrial Dynamics in Cardiac Microvascular Ischemia/Reperfusion Injury. Biomolecules 2020; 10:biom10010085. [PMID: 31948043 PMCID: PMC7023463 DOI: 10.3390/biom10010085] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are key regulators of cell fate through controlling ATP generation and releasing pro-apoptotic factors. Cardiac ischemia/reperfusion (I/R) injury to the coronary microcirculation has manifestations ranging in severity from reversible edema to interstitial hemorrhage. A number of mechanisms have been proposed to explain the cardiac microvascular I/R injury including edema, impaired vasomotion, coronary microembolization, and capillary destruction. In contrast to their role in cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. It is clear that abnormal mitochondrial signatures, including mitochondrial oxidative stress, mitochondrial fission, mitochondrial fusion, and mitophagy, play a substantial role in endothelial cell function. While the pathogenic role of each of these mitochondrial alterations in the endothelial cells I/R injury remains complex, profiling of mitochondrial oxidative stress and mitochondrial dynamics in endothelial cell dysfunction may offer promising potential targets in the search for novel diagnostics and therapeutics in cardiac microvascular I/R injury. The objective of this review is to discuss the role of mitochondrial oxidative stress on cardiac microvascular endothelial cells dysfunction. Mitochondrial dynamics, including mitochondrial fission and fusion, are critically discussed to understand their roles in endothelial cell survival. Finally, mitophagy, as a degradative mechanism for damaged mitochondria, is summarized to figure out its contribution to the progression of microvascular I/R injury.
Collapse
|