1
|
Deshayes TA, Savoie FA, Pancrate T, Jolicoeur Desroches A, Morais JA, Bernier PM, Léonard G, Simoneau IL, Goulet EDB. Mild hypohydration in healthy older adults increases pain-related brain activity without affecting pain perception: a single-blind study. J Appl Physiol (1985) 2025; 138:238-249. [PMID: 39657025 DOI: 10.1152/japplphysiol.00870.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Understanding how hydration status influences pain perception is particularly important in older adults, as both dehydration and pain are prevalent in this population. Ten individuals (70 ± 4 yr) completed two randomized and counterbalanced trials. They were exposed to passive heat until they lost 1% body mass through sweat and urine (∼100 min), with the loss either unreplaced (sham infusion, HYPO) or fully replaced via 0.45% saline infusion (EUH). Nociceptive electrical stimulation was applied to the sural nerve 1) before heat exposure (baseline), 2) 60 min following hydration manipulation (R60, ∼160 min after baseline), 3) after mouth rinsing with water (MR, ∼170 min after baseline), and 4) following water ingestion (ING, ∼185 min after baseline). Pain-related event-related potentials were assessed using electroencephalography (EEG) at R60, MR, and ING. After hydration manipulation, body mass loss and plasma osmolality were greater, and plasma volumes were lower in HYPO than in EUH, although thirst did not differ between the conditions. There were no differences between the two conditions regarding pain intensity and unpleasantness. Still, EEG analyses revealed that the peak-to-peak amplitude of the pain-related N200-P300 potential (∼136-310 ms) was significantly greater in HYPO than in EUH (P = 0.036) and significantly greater in R60 compared with both MR (P = 0.01) and ING (P = 0.03), either with HYPO and EUH. These results suggest that mild hypohydration in healthy older adults may influence some neurophysiological processes related to nociception without significantly affecting pain perception.NEW & NOTEWORTHY This study reveals, for the first time, that mild hypohydration equivalent to ∼1% of body mass does not alter pain perception in healthy older adults when they are blinded to their hydration status, despite electroencephalography signals showing modulation of pain-related brain responses.
Collapse
Affiliation(s)
- Thomas A Deshayes
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Félix-Antoine Savoie
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Health Sciences, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Timothée Pancrate
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - José A Morais
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Division of Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Pierre-Michel Bernier
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Léonard
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- School of Rehabilitation, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ivan L Simoneau
- Service de soutien à l'enseignement et à la recherche, Cégep of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric D B Goulet
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Grove JCR, Knight ZA. The neurobiology of thirst and salt appetite. Neuron 2024; 112:3999-4016. [PMID: 39610247 DOI: 10.1016/j.neuron.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
The first act of life was the capture of water within a cell membrane,1 and maintaining fluid homeostasis is critical for the survival of most organisms. In this review, we discuss the neural mechanisms that drive animals to seek out and consume water and salt. We discuss the cellular and molecular mechanisms for sensing imbalances in blood osmolality, volume, and sodium content; how this information is integrated in the brain to produce thirst and salt appetite; and how these motivational drives are rapidly quenched by the ingestion of water and salt. We also highlight some of the gaps in our current understanding of the fluid homeostasis system, including the molecular identity of the key sensors that detect many fluid imbalances, as well as the mechanisms that control drinking in the absence of physiologic deficit, such as during meals.
Collapse
Affiliation(s)
- James C R Grove
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Jaramillo JCM, Aitken CM, Lawrence AJ, Ryan PJ. Oxytocin-receptor-expressing neurons in the lateral parabrachial nucleus activate widespread brain regions predominantly involved in fluid satiation. J Chem Neuroanat 2024; 137:102403. [PMID: 38452468 DOI: 10.1016/j.jchemneu.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (OxtrPBN) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of OxtrPBN neurons in order to better characterise the fluid satiation neurocircuitry in mice. Chemogenetic activation of OxtrPBN neurons increased Fos expression (a proxy marker for neuronal activation) in known fluid-regulating brain nuclei, as well as other regions that have unclear links to fluid regulation and which are likely involved in regulating other functions such as arousal and stress relief. In addition, we analysed and compared Fos expression patterns between chemogenetically-activated fluid satiation and physiological-induced fluid satiation. Both models of fluid satiation activated similar brain regions, suggesting that the chemogenetic model of stimulating OxtrPBN neurons is a relevant model of physiological fluid satiation. A deeper understanding of this neural circuit may lead to novel molecular targets and creation of therapeutic agents to treat fluid-related disorders.
Collapse
Affiliation(s)
- Janine C M Jaramillo
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Connor M Aitken
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Todini L, Fantuz F. Thirst: neuroendocrine regulation in mammals. Vet Res Commun 2023; 47:1085-1101. [PMID: 36932281 DOI: 10.1007/s11259-023-10104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Animals can sense their changing internal needs and then generate specific physiological and behavioural responses in order to restore homeostasis. Water-saline homeostasis derives from balances of water and sodium intake and output (drinking and diuresis, salt appetite and natriuresis), maintaining an appropriate composition and volume of extracellular fluid. Thirst is the sensation which drives to seek and consume water, regulated in the central nervous system by both neural and chemical signals. Water and electrolyte homeostasis depends on finely tuned physiological mechanisms, mainly susceptible to plasma Na+ concentration and osmotic pressure, but also to blood volume and arterial pressure. Increases of osmotic pressure as slight as 1-2% are enough to induce thirst ("homeostatic" or cellular), by activation of specialized osmoreceptors in the circumventricular organs, outside the blood-brain barrier. Presystemic anticipatory signals (by oropharyngeal or gastrointestinal receptors) inhibit thirst when fluids are ingested, or stimulate thirst associated with food intake. Hypovolemia, arterial hypotension, Angiotensin II stimulate thirst ("hypovolemic thirst", "extracellular dehydration"). Hypervolemia, hypertension, Atrial Natriuretic Peptide inhibit thirst. Circadian rhythms of thirst are also detectable, driven by suprachiasmatic nucleus in the hypothalamus. Such homeostasis and other fundamental physiological functions (cardiocircolatory, thermoregulation, food intake) are highly interdependent.
Collapse
Affiliation(s)
- Luca Todini
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via della Circonvallazione 93/95, 62024, Matelica, MC, Italy.
| | - Francesco Fantuz
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via della Circonvallazione 93/95, 62024, Matelica, MC, Italy
| |
Collapse
|
5
|
Yang N, Liu F, Zhang X, Chen C, Xia Z, Fu S, Wang J, Xu J, Cui S, Zhang Y, Yi M, Wan Y, Li Q, Xu S. A Hybrid Titanium-Softmaterial, High-Strength, Transparent Cranial Window for Transcranial Injection and Neuroimaging. BIOSENSORS 2022; 12:bios12020129. [PMID: 35200389 PMCID: PMC8870569 DOI: 10.3390/bios12020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/04/2023]
Abstract
A transparent and penetrable cranial window is essential for neuroimaging, transcranial injection and comprehensive understanding of cortical functions. For these applications, cranial windows made from glass coverslip, polydimethylsiloxane (PDMS), polymethylmethacrylate, crystal and silicone hydrogel have offered remarkable convenience. However, there is a lack of high-strength, high-transparency, penetrable cranial window with clinical application potential. We engineer high-strength hybrid Titanium-PDMS (Ti-PDMS) cranial windows, which allow large transparent area for in vivo two-photon imaging, and provide a soft window for transcranial injection. Laser scanning and 3D printing techniques are used to match the hybrid cranial window to different skull morphology. A multi-cycle degassing pouring process ensures a good combination of PDMS and Ti frame. Ti-PDMS cranial windows have a high fracture strength matching human skull bone, excellent light transmittance up to 94.4%, and refractive index close to biological tissue. Ti-PDMS cranial windows show excellent bio-compatibility during 21-week implantation in mice. Dye injection shows that the PDMS window has a "self-sealing" to keep liquid from leaking out. Two-photon imaging for brain tissues could be achieved up to 450 µm in z-depth. As a novel brain-computer-interface, this Ti-PDMS device offers an alternative choice for in vivo drug delivery, optical experiments, ultrasonic treatment and electrophysiology recording.
Collapse
Affiliation(s)
- Nana Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
| | - Fengyu Liu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
- Correspondence: (F.L.); (S.X.)
| | - Xinyue Zhang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Chenni Chen
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Zhiyuan Xia
- Department of Material Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
| | - Su Fu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jiaxin Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jingjing Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Shuang Cui
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Yong Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Ming Yi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - You Wan
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Shengyong Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- Correspondence: (F.L.); (S.X.)
| |
Collapse
|
6
|
Han B, Cui S, Liu FY, Wan Y, Shi Y, Yi M. Suppression of ventral hippocampal CA1 pyramidal neuronal activities enhances water intake. Am J Physiol Cell Physiol 2021; 321:C992-C999. [PMID: 34705585 DOI: 10.1152/ajpcell.00211.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirst is an important interoceptive response and drives water consumption. The hippocampus actively modulates food intake and energy metabolism, but direct evidence for the exact role of the hippocampus in modulating drinking behaviors is lacking. We observed decreased number of c-Fos-positive neurons in the ventral hippocampal CA1 (vCA1) after water restriction or hypertonic saline injection in rats. Suppressed vCA1 neuronal activities under the hypertonic state were further confirmed with in vivo electrophysiological recording and the level of suppression paralleled both the duration and the total amount of water consumption. Chemogenetic inhibition of vCA1 pyramidal neurons increased water consumption in rats injected with both normal and hypertonic saline. These findings suggest that suppression of vCA1 pyramidal neuronal activities enhances water intake.
Collapse
Affiliation(s)
- Bingxuan Han
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China
| | - Yan Shi
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China
| |
Collapse
|
7
|
Zhao Z, Soria-Gómez E, Varilh M, Covelo A, Julio-Kalajzić F, Cannich A, Castiglione A, Vanhoutte L, Duveau A, Zizzari P, Beyeler A, Cota D, Bellocchio L, Busquets-Garcia A, Marsicano G. A Novel Cortical Mechanism for Top-Down Control of Water Intake. Curr Biol 2020; 30:4789-4798.e4. [DOI: 10.1016/j.cub.2020.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 01/25/2023]
|